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1.0 INTRODUCTION

The goal of this research is to develop a basic scientific understanding of the

relation between the macroscopic mechanical properties of ceramic composites and the

properties of the microstructure, especially the fiber-matrix interface. The work is

directed to two main topics, One is to devise experiments that are capable of measuring the

properties of the fiber-matrix interface directly, and the other is to develop micromechan-

ics models that relate the interface properties quantitatively to the strength, toughness and

failure mechanisms of the composite.

Detailed results of research done during the past year are contained in four

papers which are included as Sections 2.0 to 5.0 of this report, and which are to be published

in the journals and books noted on the title pages. The results from these sections and from

other work that is under way are briefly summarized below.

The fracture mechanics modelling addressed the problems of matrix cracking,

which usually marks the onset of damage in ceramic matrix composites, and conditions

under which failure mechanisms change from being noncatastrophic to catastrophic (Sec-

tions 2.0 and 3.0). A general expression for the steady-state matrix cracking stress was de-

* rived using a 3-integral analysis (Section 2.0). The result is expressed in terms of the

* stress-displacement relation that characterizes the stretching of crack bridging ligaments

and thus provides a very convenient analytical link between macroscopic properties (stress)

and microstructural properties (ligament stretching). The influence of residual stress was

assessed and a condition for spontaneous matrix cracking due to residual tensile stress in

the matrix was evaluated. For the special case of composites containing unbonded reinforc-

ing fibers the general analysis gave results that were equivalent to independent solutions.

The influence of statistical variations in the strengths of the reinforcing fibers was also

analyzed (Section 3.0) (previous analyses have assumed deterministic fiber strengths). The

analysis, based on results of a recent study of fiber fracture and pullout, defines the in-

fluence of the stength distribution on the matrix cracking stress and on the condition for

transition between catastrophic and noncatastrophiC failure mechanisms. Analytical solu-

tions were obtained for steady state cracks using the 3-integral analysis of Section 2.0, and

numerical solutions were obtained for nonsteady state cracks. Compared with previous ana-

lyses for single-valued fiber strengths, the steady-state matrix cracking stress was not

I
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strongly influenced by the shape parameter of the fiber strength distribution, but the

transition condition was more sensitive.

In Section 4.0 our current understanding of relationships between microstructure

and mechanical properties in ceramics reinforced with aligned fibers is reviewed. Emphasis

is placed on definition of the micromechanical properties of the interface that govern the

composite toughness. Issues such as the debond and sliding resistance of the bimaterial

interface are discussed, based on micromechanics calculations and experiments conducted

on both model composites and actual composites. Implications for design of optimal

microstructures are also discussed.

In the studies of fiber-matrix interface properties, novel methods were developed

during the previous years of this contract for investigating bonding at the interface and to

measure sliding resistance. These are based on an indentation technique in which the ends

of individual fibers are pushed with a diamond indenter, and the forces and displacements

are measured continuously during loading, unloading and load cycling. Analysis of the fiber

sliding process has been extended to evaluate the influence of microstructural residual

stress, and thereby allow measurement of the residual stresses from the modified force-

displacement relations (Section 5.0). Preliminary experiments using SiC/glass ceramic

* composites have shown that residual stresses are generated by thermal cycling in an inert

environment. The influence of these residual stresses on mechanical reliability of the

composite will be assessed.

The range of composites to which the indentation method can be applied has been

extended by recognizing that load-displacement measurements during load cycling can be

used directly, without calibration of the indenter penetration into the fiber, to evaluate

frictional stresses. Previously, calibration of the indenter penetration was needed to

calculate the relative sliding of the fiber and matrix. This was obtained in the SiC-glass-

ceramic system either from measurements of residual hardness impressions in the fibers or

by calibration tests on composites that were heat treated to create a strongly bonded

interface that did not undergo sliding. However, neither of these calibrations methods

could be applied to carbon fiber-reinforced glass and glass-ceramic composites, because the

interfaces in these systems could not be eagily bonded and the combination of small fiber

radius and low frictional resistance was such that the indenter contact with the fiber was

purely elastic. Moreover, the accuracy of calculation of the elastic penetration was limited

2
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by uncertainties in the indenter profile and anisotropic elastic properties of the fiber.

These problems were circumvented by using the displacement measurements during
4'

unloading and reloading, along with appropriate analysis of fiber sliding, to evaluate the

frictional stress.

S

3
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2.0 A J-INTEGRAL METHOD FOR CALCULATING STEADY-STATE MATRIX

CRACKING STRESSES IN COMPOSITES

Mechanics of Materials

in press

4
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A ,]-INTEGRAL METHOD FOR CALCULATING STEADY-STATE

MATRIX CRACKING STRESSES IN COMPOSITES

D.B. Marshall and B.N. Cox

Rockwell International Science Center

1049 Camino Dos Rios

Thousand Oaks, CA 91360

ABSTRACT

* A general expression for the steady-state matrix cracking stress in reinforced

brittle matrix composites is derived using a J-integral analysis. The result is expressed

in terms of the stress-displacement relation that characterizes the stretching of crack

bridging ligaments. The influence of residual stress is assessed and a condition for

spontaneous matrix cracking due to residual tensile stress in the matrix is evaluated.

Results of the analysis are compared with independent solutions for composites

containing unbonded reinforcing fibers.

5
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I. INTRODUCTION

If the strengths of crack bridging ligaments in a composite material exceed a

critical value, a crack can be made to extend indefinitely in the matrix without the

ligaments rupturing in its wake. Further loading causes formation of periodic matrix

cracks, with separation dictated by a characteristic transfer length associated with the

bridging ligaments (Aveston and Kelly, 1973; Aveston et al, 1971). This failure

mechanism has been observed in several important composite systems, including

reinforced cements, glasses, and glass ceramics (Aveston et al, 1971; Marshall and Evans,

1985; Sambell et al, 1972; Phillips, 1972; Brennan and Prewo, 1982; Prewo and Brennan,

1982; Ali and Grimer, 1969; Majumdar, 1970; DeVekey and Majumdar, 1970; and Allen,

1971). An analogous mechanism has also been observed in connection with the cracking

of thin glass films on metal substrates (Raj, 1987). The stress required to extend the

•irst matrix crack (i.e., the onset of damage) is a decreasing function of the crack size if

the crack is small, but approaches a constant "steady-state" value for large cracks

(Marshall et al, 1985). In this paper we present a simple derivation of a general solution

for the steady-state matrix cracking stress. The solution, which is obtained by use of the

J-integral (Rice, 1968), is equivalent to one obtained recently by Rose (1987) who

evaluated changes in configurational energy involved in transporting a strip of material

from a location far ahead of the crack tip to a position far behind the tip.

The steady-state matrix cracking stress has been calculated previously for

some specific, relatively straightforward ligament bridging mechanisms. Aveston,

Cooper, and Kelly (1971) first analyzed bridging that involves frictional sliding between

fibers and matrix, in the limit of small frictional stress. More recently, Budiansky,

6
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iJtchinnon, and Evans (I9S6) obtained a general solution for frictional sliding, valid over

:ne fulD range of frictional stresses, from the small stress limit of Aveston, Cooper, and

Kell> to the large stress !imit at which sliding does not occur and the bridging ligaments

:ct as inear springs. These analyses involved somewhat detailed calculation of energy

:nange=, siniar to the approacn adopted by Rose (1987). An alternative, stress intensity

:pproacn has been used to evaluate both steady-state and nonsteady-state cracking for

"r:ctior, ! and linear-spring ligaments (Marshall et al, 1985, 1987). However, evaluation

the s.eady-state matrix cracking stress by this approach entails numerical solution of

an integral equation. An appealing feature of the solution discussed in this paper (in

addition to its simple analytic form and generality) is that it is expressed directly in

:erms o; the stress-displacement relation that describes the stretching of the bridging

i garnents. This form of the solution allows changes in matrix cracking stress due to

t cnanges in the bridging mechanism or to the presence of residual stresses to be readily

ceduced.

2. GENERAL SOLUTION FOR STEADY-STATE MATRIX CRACKING

The opening of a crack that is bridged by reinforcements involves stretching of

ligaments between the crack surfaces. This stretching may be characterized by a

relation between the stress, of, in the ligament and an average local crack opening

displacement, u, as depicted in Fig. 1. The form of this relation depends on the details of

the bridging mechanism and reflects properties such as ligament deformation, reinforce-

ment/matrix debonding and frictional sliding, as well as elastic stretching of the rein-

forcement. The pea!< value, of = S, represents the strength of the ligaments. The

7
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decreasing portion of the of(u) curve depends on the nature and location of reinforcement

failure. This is important for determining the toughness of composites in which rein-

iorcelients rupture in the wake of the crack, but it does not influence steady-state

matrix cracking.

The influence of bridging ligaments on the stress anywhere in the body can be

evaluated by replacing the ligaments with crack surface tractions equal in magnitude to

the stress, of, in the stretched ligament (Fig. (c)). To proceed further, the composite is

approximated as a continuum with the average elastic properties of the composite, and

wi th continuous pressure

p(u) = f of(u) (1)

acting over the crack surfaces (f is the volume fraction of reinforcements). This

continuum approximation requires the crack to be large compared with the dimensions of

the microstructural features that gi e rise to the bridging ligaments. We consider a

crack with intact ligaments over its entire surface and subject to remotely applied,

uniform, normal, tensile stress, Oa, that increases monotonically from zero to a value

smaller than fS. The crack opening displacement and the crack surface pressure increase

monotonically with distance behind the crack tip and, for sufficiently long cracks,

approach asymptotic limits equal to ua and oa (p cannot exceed oa) at the mouth of the

crack (Marshall et al, 1985) (Fig. 2(a)). This is the steady-state matrix crack configura-

tion. The stresses at the crack tip increase as the applied stress increases, but are

independent of the total crack length.

8

J8923A/ejw



Rockwell International
Science Center

SC5432.AR

For tre purpose of calculating the stresses and strains near the crack tip, the

renotely applied uniform stress, oa , can be replaced by a uniform opening pressure acting

over the crack surfaces. Then the resultant crack surface pressure becomes

a = a - p(u) (2)

as depicted in Fig. 2(b). This pressure is maximum at the crack tip and, for the steady-

state iiiatrix crack, approaches zero far from the crack tip.

The crack configuration of Fig. 2(b) is convenient for evaluating the 3-integral

(Rice, 1968). For the closed path shown in Fig. 2(b), there are three contributions that

liuSt sum to zero:

J_ + J3 + Jtip= 0 . (3)

The term J. from the path around the stress-free outer boundaries of the body is zero.

The contribution from the path over the crack surfaces is (e.g., Lawn and Wilshaw, 1975)

Uaua

JB =-2 .f c(u) du , (4)
0

and the contribution from the path around the crack tip can be expressed

tip = K2(-v 2 )/E, (5)

9
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where K is the crack tip stress intensity factor and E and v are the Young's modulus and

Poisson's ratio for the composite. Combination of Eqs. (2) to (5) yield-, the result

U8

K2 (-V )/2E = OaUa - p(u) du (6)
0

0a
f *"udp (7)
0

Equation (6) is a general expression relating the crack tip stresses (or Jti p ) to the applied

stress. It is noted that this expression is equivalent to the result derived by Rose (1987)

and that the right-hand side is the complementary energy density.

The critical applied stress, ac, for steady-state matrix cracking can be

evaluated for any given bridging law by setting 3 t ip = ic (or equivalently K = Kc as the

criterion for crack growth in the matrix. However, it is necessary to express this

fracture criterion in terms of the fracture toughness of the unreinforced matrix. Two

approaches have been used for this. In one, the fracture energy is taken to be reduced by

the factor (1-f) to reflect the true area of fracture surface created in the matrix

(Budiansky, 1986; McCartney, 1987; Kelly and McCartney, 1987), i.e.,

= jm(l-f) (8)Jc

where Jm is the fracture energy of the unreinforced matrix. An alternative (upper

bound) criterion was obtained by taking the stress intensity factor in the matrix to be

equal to the critical stress intensity factor, Kc, in the unreinforced matrix (Marshall

et al, 1985), i.e.,

10
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= m  (9)

where Em is the Young's modulus of the matrix, and the factor E/Em accounts for the

relative magnitudes of the average composite stresses and the actual stress in the

matrix. With Eq. (5) this criterion can be expressed

m 2  v2 2

c= E K c (1-v )/Em2  (10)

which differs from Eq. (8) by the factor E (1-f)/E (since J = Km (1-V 2 )/E Them c c (-)/M) Th

differences between these two criteria are discussed more fully elsewhere (Marshall

et al, 1988). For consistency with other publications, we shall adopt the criterion of

Eq. (8) in the following sections.

* 3. COMPARISON WITH ALTERNATIVE SOLUTIONS: UNBONDED FIBERS

To evaluate the energy changes accompanying steady-state matrix cracking in

unbonded fiber reinforced composites, Budiansky, Hutchinson and Evans (1986) calculated

the stresses and strains in the bridging fibers and the surrounding matrix using a modified

shear lag analysis. By integrating these strains to obtain the crack opening displacement,

the stress-displacement relation for the bridging fibers was recently derived in the

following form (Marshall et al, 1988):

U2 2/42 P < p *  u < u* 0)
u (P + a p > p*, u > u*

IeI
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where p* = c,/23 (12)

u = 2/2B (13)

a RErr(1-f) (14)
PfEfE

R E 2(1-f)
2

4 Ef E2 f2  (15)

2 -4E(1-f) (16)
0 Ef(l+vm)[ 2 log f + (1-f)(3-f)1

with R the fiber radius, Ef the Young's modulus of the fibers, vm the Poisson's ratio of

the matrix, and T the sliding frictional stress at the fiber matrix interface. The condition

(u Z u* , p = p*) defines the onset of sliding between the fibers and matrix. For

displacements smaller than u*, sliding does not occur and the fiber bridges act as linear

elastic springs. For u >> u*, sliding between the fibers and matrix occurs over an area

that extends a large distance (compared with R) from the crack surface and the solution

corresponds to the large slip limit analyzed in the steady state by Aveston, Cooper and

Kelly (1971).

3.1 No-Slip Limit: Linear Springs

If the matrix cracking stress is smaller than p*, slip does not occur at any of

the crack-bridging fibers. The stress-displacement relation is (Eq. II)

u = Op (17)

12
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and substitution in Eq. (6) gives the solution for the steady-state matrix cracking stress

2 (18)

With Jc and a defined by Eqs. (8) and (14), it is straightforward to show that Eq. (18) is

identical to the energy balance solution of Budiansky, Hutchinson and Evans (1986).

3.2 Large Slip Solution

If the matrix cracking stress is much larger than p*, the bridging stresses are

dominated by the large displacement limit

u = O2 (19)

In this case the steady-state matrix cracking stress obtained by substitution in Eq. (6) is

o1(3 Jc/2B) 1 3  (20)

With 3 c and a given by Eqs. (8) and (15), this result is identical to the large slip solution

of Aveston, Cooper and Kelly (1971).

3.3 General Solution

The general solution for steady-state matrix cracking stresses, oc , larger than

p* is obtained by substituting the complete expression of Eq. ( 1) into Eq. (6) yielding

13
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Jc = (2 J f3 + 3 p*, - p*31 (21)

This result can be expressed in terms of the limiting solutions 00 and a, for no slip and

large slip by making use of the relations

03Jc = p 1 _( (22)

28a ao 0

which follow from Eqs. (12), (18) and (20). The resulting expression,

3 3 6 9

(-c ) (-s L. (() I 23
0 0 3a0 a0 27a0

is identical to the energy balance solution of Budiansky, Hutchinson and Evans ([996).

4. THE INFLUENCE OF RESIDUAL STRESS

Many composites contain residual stresses due to differences in nonelastic

strains that occur in the matrix and reinforcements during fabrication (e.g., thermal

expansion mismatch, plasticity, phase transformation). The derivation of Eq. (6) is based

on a continuum model that requires all dimensions to be large compared with the

microstructural features that give rise to the residual stresses and the bridging liga-

ments. Over such dimensions the average residual stress is zero. Therefore, the

derivation of Eq. (6) is not altered in any way by the presence of residual stresses

(provided, of course, that further phase transformation or plasticity does not accompany

14
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matrix cracking2). However, residual stresses do influence oc through their effect on the

stress-separation function p(u).

The influence of residual stress on the p(u) relation has been evaluated for

composites wi:,. uniaxially aligned fibers (Marshall and Evans (1988)). In this case the

m flongitudinal residual stresses in the matrix, oR, and fibers, aR, are related by

0m/E = -of/Ef (24)

where Ef is the Young's modulus of the fibers. One effect of the residual stress is to

shift the interceDt of the p(u) function along the stress axis by

0 = E/Em (25)
OR R

as depicted in Fig. 3. In general, residual stress can also alter the slope of the p(u)

relation. Therefore, this relation can be written in the form

0 0

p(U) 0 + Pr(UOR) (26)

and Eq. (6) becomes

2 2 0 Ua 0

K (1-V2)/E = 2 (aa - oR) ua - 2 f Pr(uIo)du (27)
0

15
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For certAin bridging mechanisms, the effect of residual stress is to translate

the p(u) function uniformly along the stress axis. Two examples are fibers that do not

experience debonding or sliding and fibers held by friction due to surface roughness at

the fiber matrix interface (i.e., the sliding resistance, T, independent of residual stress).

In this case

Pr(U~o#) = Po(U) (28)

vNhere po(u) is the stress-displacement function in the absence of residual stress, and both

ua and the integral in Eq. (27) are independent of oR . Therefore, the effect of the

residual stress is simply to increase the matrix cracking stress by o (o is positive for

compressive residual stress in the matrix and negative for tensile residual stress).

Equation (27) with K = Kc provides a general solution for the critical applied

stress for ruatrix cracking in the presence of residual stress. Alternatively, we can solve

for the critical residual stress that will cause spontaneous matrix cracking by setting

0 at K = Kc . (In this case a will be negative, i.e., tensile residual matrix stress.)Oa R

5. DISCUSSION

An insightful representation of the general relation for steady-state matrix

cracking (Eq. (6)) is shown in Fig. 4(a). The right-hand side of Eq. (6) is given by the

shaded area between the stress-displacement relation for the bridging ligaments and the

constant stress line representing the applied stress. The critical condition for matrix

cracking is determined by the applied stress for which this area is equal to Jc/2

16
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(i.e., K2(1-v 2)/2E). Thus, for a given matrix and volume fraction of reinforcement thisC

area is constant. It also follows that any change in the matrix toughness or composite

stiffness that increases the ratio Kc/E must cause cc to increase. Moreover, the effect

of changing the nature of the bridging ligaments on the matrix cracking stress can be

readily deduced; generally, any change that stiffens the loading portion of the p(u) curve

must increase c', whereas changes to the maximum value of p(u) or to the region of the

curve beyond the peak have no influence on c. It is also immediately evident that, if the

bridging mechanism is such that a residual stress simply translates the increasing portion

of the p(u) curve along the stress axis by a0 without changing its shape, the matrix

cracking stress must increase by a .

It is useful to contrast this representation for the steady-state matrix cracking

stress with an analogous interpretation for the steady state toughness that results when

"c exceeds the peak value of p(u) and fibers break in the wake of the crack. In this case

an expression for the steady state toughness increment AJc due to the bridging zone that

remains over a limited region behind the crack tip has also been derived using the

i-integral (Budiansky, 1986; Rose, 1987):

ud

AJc = 2f p(u) du (29)
0

where ud is the crack opening displacement above which the ligaments no longer restrain

the crack. Therefore, the increase in fracture toughness is represented by the area

beneath the p(u) curve as depicted in Fig. 4(b). Any change that increases this area,

including modification of the peak or the unloading portions of the p(u) curve, leads to an

increase in fracture toughness. In contrast to the result for the steady-state matrix

17
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cracking stress, a reduction in stiffness of the loading portion of the p(u) curve would

usuall lead to an increased toughness increment (provided the peak value of p(u), i.e.,

the ligament strength, is not decreased). The influence of residual stress on the

toughening increment is very dependent on the nature of the bridging ligaments because

residual stresses would generally be expected to affect the peak of the p(u) curve as well

as translating the curve along the stress axis (Marshall and Evans, 1988). Thus, residual

stresses of a given sign can either increase or decrease the degree of toughening depend-

ing on the bridging mechanisms.
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Figure Captions

1. (a) Crack bridged by reinforcing ligaments.

(b) Schematic of stress-displacement relation for stretching of bridging

ligaments.

(c) Crack with bridging ligaments replaced by surface tractions.

2. (a) Steady-state matrix crack loaded with uniform applied stress.

(b) Steady-state matrix crack with uniform applied stress replaced by

uniform opening pressure acting on crack surfaces.

3. Influence of residual stress on the stress-displacement relation for ligament

* stretching.

" 4. Representation of (a) steady-state matrix cracking stress, and (b) steady-state

toughness increase, in terms of areas related to the stress-displacement curve

for ligament stretching.
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ABSTRACT

* Matrix cracking is analyzed for brittle matrix composites containing fibers with

statistically distributed strengths. The analysis, based on results of a recent study of fiber

fracture and pullout, defines the influence of the shape parameter of the strength distribu-

tion on the matrix cracking stress and on the condition for transition between catastrophic

and noncatastrophic failure mechanisms. Analytical solutions are obtained for steady state

cracks and numerical solutions for nonsteady state. The results are compared with previous

analyses for single-valued fiber strengths: the steady-state matrix cracking stress is not

strongly influenced by the shape parameter, but the transition condition is more sensitive.
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Ceramic materials can be toughened by fibers and whiskers that form bridges

across cracks and thereby restrict the crack opening. 1- 10 The strengths of such brittle

reinforcements are expected to fall in a statistical distribution. The purpose of this paper

is to examine the influence of the width of the strength distribution on the applied stress

necessary to extend cracks that initially have bridging zones over their entire surfaces.

The influence of bridging fibers on the fracture behavior of the composite can be

analyzed by replacing the fibers by crack closure tractions equal in magnitude to the stress

in the fibers multiplied by the fiber volume fraction. i 1- 17 This stress is a function of crack

opening displacement. For composites in which the bridging stresses are determined by

frictional sliding between the fibers and matrix, and in which the fibers possess a single-

valued strength, the role of sliding resistance and fiber strength in determining the fracture

behavior of the composite has been evaluated. 1 1' 12 Two main regions of behavior were

identified. If the fibers are sufficiently strong, they continue to bridge a matrix crack even

when it extends completely through the matrix. This leads to multiple, periodic matrix

cracking and a noncatastrophic mode of failure. However, if the fibers are weaker than a

critical value they break in the wake of the crack leaving a zone with intact fibers over

only a limited area behind the crack tip. This results in catastrophic failure, but the

bridging zone can be an important source of toughening. A limitation of these analyses is

that the fibers were assumed to have a single-valued strength. This assumption restricts

the failure of the fibers to the region between the crack surfaces, because that is where the

stress in the fibers is maximum. Moreover, fiber failure always occurs at the edge of the

bridging zone furthest from the crack tip, where the surviving fibers are most extended, and

the bridging stress drops abruptly to zero as depicted in Fig. Ia. For composites with

randomly oriented whisker reinforcements this assumption may be a reasonable approxima-
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tion because bending stresses acting near the crack surfaces would bias failure to that

region. However, uniaxially aligned fibers with a statistical distribution of strengths can

fail at positions away from the crack plane and continue to resist crack opening by fric-

tional sliding during pullout. Moreover, there is a finite probability that fibers will fail as

soon as the crack begins to open, so that fiber failure occurs throughout the bridging zone.

A stress-displacement law based on statistical considerations of fiber fracture

and pullout was derived recently by Thouless and Evans 1 8 and applied to evaluate steady-

state toughening. In this paper, we apply the results of that analysis to examine the

influence of statistical fiber strength distribution on the matrix cracking stress for fully-

bridged cracks (i.e., noncatastrophic failure, which manifests itself as multiple matrix

cracking) and the condition for transition to partial bridging (catastrophic failure).

2. Stress-Displacement Law for Bridging Ligaments

Thouless and Evans 18 derived a stress-displacement law that takes into account

frictional sliding between matrix and fibers and a statistical distribution of fiber strengths.

The fiber strengths were assumed to satisfy weakest link statistics, given by the two param-

eter Weibull distribution. Sliding was taken to be opposed by a constant frictional stress, r,

at the fiber/matrix interface, and T was assumed to be sufficiently small that elastic

stresses beyond the slip area could be neglected. This large slip approximation is the same

as that employed in other analyses of matrix cracking and toughening.10-16 With these re-

strictions the stress-displacement law, in terms of the nondimensional stress, S = a/f r, and

crack-opening displacement, U = u/un, is
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S U 112 exp(-U )

m+1 m+2 M+1
+ 11- exp(-U - 2 )2 [Y{i----' U 2 - } - f U] (-f)Em/E(m+l) (I)

where m is the Weibull modulus of the fiber strength distribution, r(8) and y {8 ,u} are the

complete and incomplete gamma functions defined by

r(o) = -x8'1 exp(-x) dx (2a)
0

and

y(6,c) = " x -1 exp(-x)dx , (2b)
0

and the other parameters are defined as follows:

z <s>/r (m + 2) (3)

2 R(1 - f)E 

(

n 4T Ef E "

where R is the radius of the fibers, s> is the average fiber strength,* f is the volume

fraction of fibers, and Ef, Em and E are the Youngs moduli of the fibers, matrix, and

composite (E = fEf +(1 - f)Em). Equation (1) is plotted in Fig. 1(b) for several values of m,

* The "average fiber strength" here is the average value of the maximum stress in the
fibers in the plane of the crack.

31
38956A/jbs



Rockwell International
Science Center

SC5432.AR

using values for the dimensionless parameters zIEf and Ef/Em that are typical for ceramic

composites (5 x 10-3 and 2). Decreasing m corresponds to increasing width of strength

distribution, with m = - corresponding to single-valued strength. The effect of decreasing

m at fixed average fiber strength is to decrease the peak value of bridging stress, Sm , and

to reduce the rate of decrease in stress at displacements larger than that corresponding to

the peak, U m . The tail of the curve corresponds to crack opening displacements at which

most of the fibers are broken; in this region the stress arises from frictional resistance to

pullout of the broken fibers from the matrix.

The formation of periodic matrix cracks requires that the fibers support the en-

tire applied load. This is possible only if the stress for matrix cracking is smaller than the

* peak bridging stress, Sm , and the crack opening displacements are smaller than Um. Over

this range of displacements the first term of Eq. (1) is a good approximation for the

* complete expression (see Fig. 1(b)). Therefore, this term will be used to represent the

stress-displacement relation in the following sections, thereby allowing the set of

independent variables in the problem to be reduced to the average fiber strength, the

Weibull modulus, and the normalized stress, displacement and crack length.

3. Steady-State Matrix Cracking Stress

The applied stress required to extend a fully-bridged matrix crack is a decreasing

function of crack length for small cracks, but approaches a constant, "steady-state" value

for large cracks. 11  In this section an analytical result derived recently 19 is used to

determine the steady-state matrix cracking stress for the stress-displacement relation de-

scribed in Section 2. Numerical solutions for nonsteady-state cracks and for the onset of

fiber failure are presented in Section 4.
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A J-integral analysis for steady-state matrix cracking gives the following rela-

tionship between the critical stress, cc, and the critical crack tip fracture energy 3c19 =

uC

Jc/2 c uc - f a(u) du (5)
0

where uc is the crack opening corresponding to the bridging stress cc. For the stress-dis-

placement relation defined by the first term of Eq. (1), oc and uc are related by

m+1

ac/ft = (Uc/un)11 2 exp(- (uc/un) ) . (6)

The fracture energy 3c can be expressed in terms of a critical stress intensity factor, Kc:

Jc = K c( -1 2 )/E (7)

where v is Poisson's ratio. Equation (5) has the useful graphical interpretation illustrated in

Fig. 2: the right side of Eq. (5) is the complementary energy function, represented by the

shaded area between the stress-displacement curve for the bridging ligaments and the

horizontal line representing the matrix cracking stress cc* Therefore, if the function a(u) is

changed while keeping 3c constant (e.g., by changing m) the matrix cracking stress shifts so

as to keep this area constant and equal to 3c/2. For small values of cc, the stress-

displacement relations in Fig. lb are insensitive to the Weibull modulus, m. However, if 0 c

is close to the peak value of o(u), increasing m causes o(u) to shift to the right, thereby

significantly reducing the critical stress, cc .
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A single-valued fiber strength is represented by the Weibull modulus m =. In

this case, the first term of Eq. (1) can be expressed as

O= (8)

where

12 41f2EfE 1/2
nfUn1/2 = R(l - f)Em I

Substitution of Eq. (8) into Eq. (5) gives the value ol taken by oc for steady-state matrix

cracking:

°1 = 3 2Jc/211/ 3  (10)

This result is identical to the solution obtained originally by Aveston, Cooper, and Kelly1

using an energy balance analysis. 1 1,12

3.2 Statistically Distributed Fiber Strengths

The general result for finite values of m is obtained conveniently by expressing

Eq. (5) in normalized form:

S13/3 = Scuc - f"' S dU (11)
0

where
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Sc =c/f ' S1 = 01/fz, Uc = Uc/un  (12)

and fz, un and a are defined in Eqs. (3), (4) and (12). Solutions of Eq. (11) with S(U) given

by the first term in Eq. (1) are plotted for various values of m in Fig. 3. For given m, the

normalized critical stress Sc is a function only of the parameter S1. To allow ready

comparison with the result for single-valued fiber strength (m = ), the solutions in Fig. 3

are plotted in the form Sc/S1 (which is identical to ac/al) as a function of S1.

Steady-state matrix cracking occurs only if Sc is smaller than the peak value, Sm,

of S(U). If this condition is not satisfied, most of the bridging fibers break during loading

before the crack extends in the matrix. The crack becomes partially bridged and the com-

posite fails catastrophically rather than by the noncatastrophic, multiple cracking mecha-

nism. The condition for this transition in failure mechanism is obtained by differentiating

the first term of Eq. (1) to find the maximum, Sm:

1

= =S )+m exp(m+- ) (13)

This stress is indicated by the terminal points of the curves in Fig. 3 and is plotted as a

function of m in Fig. 4(a). The solution at this transition exhibits the maximum departure

of the matrix cracking stress from the solution for single-valued fiber strength. For values

of m typically found in brittle materials (m > 1) the reduction in ac compared with the value

for single-valued fiber strength is small (5 10%). Even in the limit m = 0 the maximum

reduction is only = 30%. However, the average fiber strength corresponding to the transi-

tion point (i.e., the minimum average fiber strength required to support a steady-state

crack for a given value of o) is more sensitive to m (Fig. 4b): for m = the steady-state

solution requires f1 > o, whereas for m = 1, ft > 2c1 is necessary.
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The analytical solutions for the steady-state matrix cracking stress (Eq. 5) apply

to cracks that are sufficiently long that, under uniform applied stress oc, the crack opening

displacement far from the crack tip approaches the asymptotic limit uc given by Eq. (6)

(Fig. 5a). For fully bridged cracks that are not large enough to satisfy this requirement

(i.e., the crack opening is smaller than uc everywhere (Fig. 5b)), or for partially bridged

cracks, the matrix cracking stress is dependent upon the crack length, and evaluation of the

critical stress requires solution for the crack opening displacement.

The crack opening displacement at position x within a straight crack subject to

uniform tensile stress o can be obtained from the integral equation I 1,2 0

u(x) = 4(1 - v2)c 1 t ds
x Vt? - x2 0 /t2 - S2

where c is the crack length, x, s, and t are position coordinates (normalized with respect

to c) within the crack (Fig. 5b), and ayy is given by

yy= . - a(u). (15)

With the normalizing parameters defined in Eqs. (3) and (4), and with G(u) defined by the

first term of Eq. (1), Eqs. (14) and (15) can be expressed in the nondimensional form

1 t F(U, S) ds
U(x) = S. C f _ f dt (16)

X /t2 - x 2  0 Jt2 - S2

m+1

F(U. S.) = 1 S- 1 U1 / 2 exp(- U ) (17)
O m
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S C= a./f- (18a)

C = c/c n  , (18b)

iER(I - f)Em
n = 16TfEf(1 - V2) (18c)

After the crack opening displacements are calculated from Eqs. (16) and (17) the crack tip

stress intensity factor can be obtained from the relation

1 a yydx
K = 2, c f (19)

0 I -X2

which can be expressed in the nondimensional form

/c SI312 1 F(U, S.) dxK/Kc = S. VC f" (20)

;0 T- x2

Then the critical value, cal of a. at which matrix crack extension occurs is found by setting

K = Kc as the fracture criterion.
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Using the procedure described in Appendix A, numerical solutions for U(X) and

hence K (from Eq. 20) were found for sets of values of applied stress, crack length, and

Weibull modulus. The results are plotted in the normalized form (K/Kc) S13 / 2 vs S. for

selected values of crack length C and Weibull modulus, m, in Fig. 6. The applied stress re-

quired for a crack to extend in the matrix is obtained from the intercept of the appropriate

curve with the horizontal line corresponding to K = Kc (i.e., the horizontal line with

ordinate S13/2).

For most values of m and crack length there is a range of stresses for which two

solutions to the integral equation (Eq. 16) exist. The significance of these solutions can be

appreciated by examining solutions for the case m = - (single valued fiber strength)

obtained previously, 12 in which the stresses in the bridging fibers were calculated for

cracks with partial bridging zones. For given total crack length and fiber strength, the

applied stress required to stretch the last fiber of the bridging zone to the point of failure

varied with bridging zone length as shown in Fig. 7a. Upon applying stress to a fully-bridged

crack (path O-A in Fig. 7a) the stresses in all of the bridging fibers are initially lower than

their strength and K increases continuously as depicted in Fig. 7b. At the applied stress

corresponding to position A in Fig. 7a, the fiber at the mouth of the crack breaks. This in-

creases the stress on the adjacent fiber causing it to break, and all of the fibers between A

and B fail at constant applied stress. The loss of bridging fibers causes K to increase dis-

continuously, as indicated by the transition A - B in Fig. 7b. Further increase of a causes

stable fiber failure and continuous increase in K. If the applied stress is decreased from

position C, and if the bridging forces are restorable, the path C B D E in Figs. 7a and 7b is

followed. Therefore, the lower and upper branches of the K(o) curve are identified with full

and partial bridging of the crack surfaces.
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The K(c) relations in Fig. 6 for finite values of m are analogous to those for

m =. However, there are several important differences. The distinction between full and

partial bridging is less precise for finite m because of the continuous decrease in the a(u)

relation at crack opening displacements larger than that corresponding to the maximum of

O(u) (urn in Fig. 2). Even though the bridging forces may be very small over part of the

crack surface, a partial bridging zone is not clearly demarcated as it is for the case m = -,

where the a(u) relation falls abruptly to zero at u > Um. Nevertheless, the transitions from

the lower to the upper branches of the curves in Fig. 6 are distinguished, for all but the

shortest cracks, by a discontinuous change in the crack profile from one with u < urn over

most of the crack to one with u > urn over a substantial part of the crack. When the Weibull

parameter is infinite the transition is always discontinuous. For finite m, however, there

exists a range of small cracks for which the transition is continuous. Finally, there are

some interesting qualitative differences in the state of the crack at the critical point A.

When a crack is loaded in the fully bridged configuration, the crack-mouth-opening

displacement at A for finite m and finite crack length exceeds that at which a(u) is

maximum. Figure 8 shows the crack-mouth-opening displacement (i.e., u(O)) as a function

of the reciprocal crack length cn/c for various values of m. The data show some numerical

error, because u(O) is a very steep function of the load S at and near A, and there is some

uncertainty in locating A. However, since u(O) increases with stress as A is approached, the

values shown are lower bounds for cr/c > 0. Determination of the points A and D is discus-

sed more fully in Appendix B. For cn/c = 0 (infinite crack length), the point A must again

correspond to u(O) = um , and that point in Fig. 8 is therefore known exactly. Therefore,

there is no doubt that u(O) can greatly exceed urn at point A, and the fibers at x = 0 may

contribute very little to the closure pressure p(x). It is not at all obvious what
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characteristic of the crack profile signals the approach of instability as a fully bridged

crack is loaded.

4.2 Composite Failure

The sequence of events leading to failure of the composite from a fully bridged

crack under monotonic loading is dictated by the position of the horizontal line correspond-

ing to K = Kc in Fig. 6. This position is determined by the parameter S1 = oa/fl:, which is

the reciprocal of the normalized average fiber strength: increasing the average fiber

strength shifts the line to lower ordinates. Four ranges of behavior can be identified, as de-

picted by the regions I to IV in Fig. 9. Within region I (high fiber strengths), the noncata-

strophic multiple matrix cracking mechanism occurs, whereas in the other three ranges fail-

ure is catastrophic.

Multiple Matrix Cracking

For the noncatastrophic multiple cracking mechanism to occur, the bridging liga-

ments must be able to support the applied load after a crack passes completely through the

matrix, i.e., the peak bridging stress, am (Eq. 13) must exceed the matrix cracking stress.

For cracks of infinite length (steady state) the normalized fiber strength required to satisfy

this condition was plotted as a function of the Weibull modulus in Fig. 4b. For finite cracks

the critical fiber strengths are higher than these values because the matrix cracking stress,

Cal increases with decreasing crack length. Therefore, the critical fiber strengths in Fig. 4b

represent lower bound requirements. General solutions for the critical fiber strength

(defined by SI(M) in Fig. 9) as a function of crack length are shown in Fig. 10.
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The variations of the matrix cracking stress with crack length are plotted in

Fig. 11. The crack lengths in this figure are multiplied by ft/o I to make them independent

of x (the normalizing parameter cn is proportional to 2, Eq. (8c)). The lower boundaries of

the shaded areas in Fig. II (a) to (d) are the loci of the points satisfying the condition

Ca = am , for each value of fZ/al. Solutions within the shaded areas give rise to multiple

matrix cracking, whereas the solutions below them correspond to regions 1I, I1 and IV of

Fig. 9, which represent catastrophic failure of the composite. For large values of m, the

solutions for values of fE/o! that satisfy the condition for multiple cracking differ very

little from the result for fz = - (which is independent of m). The maximum difference

between the stress, cal for multiple matrix cracking and the result for fi = is defined in

Fig. 3.

4.3 Catastrophic Failure Mechanism for Fully Bridged Cracks

For normalized fiber strengths, fr/o1 , smaller than the value defined by sI(M) in

Fig. 9 and plotted in Fig. 10, failure of the composite is catastrophic at constant applied

stress. There are several sequences of events that may lead to failure, depending on the

relative values of f/aj, the normalized crack length, and the Weibull parameter, m. For

fiber strengths corresponding to region 1I in Fig. 9, crack growth occurs unstably in the

matrix (when the condition K = Kc is satisfied) and is accompanied by fiber failure in the

crack wake after some growth in the matrix. This mechanism is most prevalent for small

cracks. The strength of the composite is equal to the matrix cracking stress, given by the

solution to the left of the dotted curves in Fig. 1I. For fiber strengths within region III of

Fig. 9 (corresponding to the area containing dotted curves in Fig. 11), the transition to the

upper branch solution for K (i.e., "unzipping" of the bridging fibers) occurs before the crack

grows in the matrix. However, at the upper branch (position B in Fig. 9) K is larger than
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Kc, so catastrophic failure ensues. Therefore, the strength of the composite is dictated by

the unzipping of the fibers. (Note this strength is not given by the dotted curves in Fig. 11:

they simply join curves for given S, either side of this region.) For fiber strengths within

the region IV of Fig. 9, the transition to the upper branch also occurs before the crack

extends in the matrix. However, at position B in Fig. 9, K is smaller than Kc . in this case

further load increase, accompanied by stable fiber failure, is needed before the crack grows

in the matrix. At the condition K = Kc unstable matrix crack growth and fiber failure occur

simultaneously. For large cracks, this configuration can be described by a steady-state

toughness increase, with an analytical expression for the strength (Appendix C):

3 1/2•s/,C= 11/2 + 6si 3 ~ }(+1J.(1

5. Discussion and Conclusions

Numerical methods developed previously I 1,12 have been shown to solve the inte-

gral equation that defines the crack opening displacement for more general force/displace-

ment laws. The algorithms for finding self-consistent solutions appear to work so well that

solutions can be found right up to the point of a physical transition in the underlying system,

even though the integral equation becomes increasingly unstable there. An apparently com-

plete set of solutions has therefore been obtained, detailing the regimes of partially and

fully bridged crack solutions, and allowing the mechanisms of failure to be traced under

general conditions. With guidance from the analytical result for the steady state limit

(Eq. 5),19 there is no reason why the same approach would not succeed even for oscillatory

force/displacement laws, as found when fluids are present in the crack opening. 2 1
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Results of the calculations indicate that the fracture of composites containing

matrix cracks that are fully bridged by fibers is not strongly affected by the width of the

fiber strength distribution. Over the range of Weibull shape parameters typically expected

for brittle fibers (m z 1) the steady-state matrix cracking stress is within 10% of its value

for a single-valued fiber strength (m = -). At fiber strengths below a certain value the

failure mechanism changes from the noncatastrophic mode associated with multiple matrix

cracking to a catastrophic mode resulting from simultaneous fiber fracture and matrix

crack growth. The transitions in failure mechanism and sequences of events that lead to

failure are very similar to those evaluated previously for the single-valued fiber strength.

The main difference is that the average fiber strengths at which the transitions occur

o increase with decreasing m. The maximum increase is approximately a factor of two.

The increased tendency to a catastrophic mode of failure with decreasing values

of m is offset to some extent by a potential increase in fracture toughness if the

catastrophic failure mode prevails. This arises from the contribution of the tail of the a(u)

function to the integral that determines the steady state toughness (Eq. C). Therefore, as

pointed out previously,18 if the catastrophic mode of failure is unavoidable then a wide

fiber strength distribution appears to be better than a narrow one. However, full evaluation

of the relative merit of increasing the width of fiber strength distribution requires analysis

of cracks that initially have no bridging fibers (e.g., saw cut) and which must exhibit a rising

resistance curve (R-curve) with crack extension. This will be the topic of a future

publication.
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NUMERICAL SOLUTIONS

Equations (16) and (17) were solved by iteration to self-consistency in U(X) using

numerical methods described in Ref. 12. In all calculations reported here, 80 grid points in

the crack length variable were sufficient to assure 3 figure accuracy in all crack opening

displacements and resultant stress intensity factors.

The procedure for mapping out the self consistent solution or solutions for all

values of applied stress, crack length, and Weibull parameter m is necessarily different to

that used in Ref. 12 for fibers of a single, common strength. In the earlier work, solutions

were obtained for cracks with bridging zones of various assumed, constant length. Beyond

the bridging zone, all fibers were assumed to have broken and the closure pressure 0(u) was

therefore identically zero there. For each such case, the effective stress intensity factor

and the stress in the last fiber in the bridging zone were calculated and stored in data

files. When all possible crack lengths, bridging zones lengths, and applied stresses had been

spanned, interpolation amongst the filed data could be used to determine an exhaustive list

of all possible solutions for which the last fiber was stressed exactly to some prescribed

strength and/or the effective stress intensity factor was equal to Kc.

In the present work, such a procedure is inapplicable. For ensembles of bridging

fibers with random strengths, a(u) no longer vanishes identically beyond some critical crack

opening displacement. The bridging zone is no longer sharply demarked, and the last fiber

in the zone cannot be identified. Therefore, one cannot set about finding all possible

solutions by specifying a priori all possible crack bridging configurations.
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Nevertheless, nearly all solutions obtained fell clearly into two categories. Those

for which the crack opening displacement everywhere is less than or not much greater than

that at which a(u) is maximum are still appropriately called fully bridged cracks. Those for

which part of the crack has opened well beyond the point of that maximum can still be

called partially bridged. When the Weibull parameter m is infinite (single valued fiber

strength), the transition with changing stress at constant crack length from fully bridged to

partially bridged solutions is always discontinuous. For finite m, however, there exists a

regime of small cracks for which the transition is continuous.

Solutions were mapped out as follows. For any crack length, a solution was found

at some stress sufficiently high that the crack was clearly partially bridged. This solution

* was then followed at constant crack length as the applied load was decreased by small, dis-

crete amounts. The self-consistent solution at the last stress was used as the initial trial

solution for iteration at the next stress level. If a discontinuous transition to a fully bridged

crack solution existed for that crack length, the integral equation would become

numerically unstable at some critical stress. As this stress was approached, the algorithms

for achieving self-consistency would take longer and longer to achieve their goal, until

eventually the solution would flop over spontaneously to a fully bridged solution (Fig. 6a).

This discontinuous change was readily identified by an unusually large change in the

effective stress intensity factor. When this happened, the initial trial solution was returned

to the last partially bridged self-consistent solution and the interval of the step reduction of

the stress was halved. The stress at which the partially bridged solution disappeared was

thus found automatically and fairly precisely.

If the transition to fully bridged cracks was continuous (short cracks, finite m),

then the procedure of decreasing the applied stress would solve the problem all the way

down to very low stresses. (Although fully-bridged solutions must exist for arbitrarily small
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stresses, the integral equation becomes numerically unstable as S - 0, and there is a prac-

tical limit to the solutions that can be obtained.)' 1 ,2 1

If the transition to fully bridged cracks was discontinuous (as for longer cracks),

then the branch of fully bridged cracks was determined by first finding a solution at some

stress level beneath the minimum at which a partially bridged solution exists. In analogy to

the procedure for delimiting partially bridged solutions, the stress was then increased and

the point of instability of the fully bridged solutions was determined.

The critical stress marking the end of the branch of fully bridged crack solutions

was always greater than that marking the end of the branch of partially bridged crack

solutions. Further remarks on the precision of its determination follow in Appendix B.
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DETERMINATION OF CRITICAL POINTS FOR TRANSITION IN BRIDGING STATE

Given the increasing numerical instability of the integral equation (16) near the

critical points A and D (Fig. 7), and given the obscurity of the crack characteristic that

signals an approaching transition, one must query whether the calculated critical points

merely reflect inadequacy of the numerical algorithms being used or indeed mark a transi-

tion in the underlying physical system. Confidence in the latter being the case is sustained

by several considerations. Figure BI shows the difference SA - SD in the applied stresses at

points A and D as a function of crack length for various values of m. The calculated data

lie on very smooth curves, suggesting that failure to find solutions beyond those presented

near points A and D in Fig. 6 reflects the physics of the problem rather than the effects of

numerical inaccuracy. Extrapolating the curves of Fig. BI to SA - SD = 0 yields the crack

length A at which the gap first exists for any value of m. This is plotted in Fig. B2 as a

function of I/in. A parabola fitted through the data of Fig. B2 passes through the origin to

within the accuracy of the calculations, confirming that there is always a discontinuous

transition from partially to fully bridged cracks when m = ' (single-valued fiber strength).

Finally, the entire lower branch of fully bridged crack solutions in Fig. 6 can be calculated

exactly for steady state cracks (C =) by using the 3-integral result of Marshall and Cox 19

(see Sect. 3 above). The critical point A. is, of course, given, when C - -, by the condition

that U(O) = Um. The results of this calculation are shown in Fig. 6 by the heavy curves.

The curves and their termination points are in acceptable accord with the numerically

calculated results for finite crack length.
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STEADY-STATE TOUGHENING

A general expression for the increase in fracture toughness resulting from a

steady state bridging zone has been derived using the 3 integral in the form 13 17

K2 =K+ 2E f o(u) du , (Cl)

where K. is the remote applied stress intensity factor (i.e., measured fracture toughness).

With K. given by

K = /woc12 (C2)

equation (C) can be expressed, using the normalizing parameters defined in Eqs. (3), (4),

(10), (12) and (18), in the form

Sit S 312i + 3S- f' S dU]' 1 2  
.(C 3)

Then evaluation of the integral with S(u) defined by the first term of Eq. (1) gives the result

in Eq. (21).
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Fig. I (a) Fiber bridging stress for single valued fiber strengths. (b) Fiber bridging

stresses for fibers with strengths given by a Weibull distribution with shape

parameter m: broken lines from solution in Ref. 18, full lines approximation used

in present analysis.

Fig. 2 Representation of the steady state matrix cracking stress, ac , in terms of the

complementary energy function for the bridging forces.

Fig. 3 Variation of steady state matrix cracking stress (from Eq. 12) with fiber strength

and Weibull modulus. Terminations of curves correspond to transition in failure

mechanism.

Fig. 4 (a) Variation of minimum steady state matrix cracking stress (i.e., terminal points

for the curves in Fig. 3) with Weibull modulus. (b) Critical fiber strengths

corresponding to the solutions of (a).

Fig. 5 (a) Steady-state matrix crack. (b) Nonsteady state matrix crack.

Fig. 6 Numerical solutions for the crack tip stress intensity factor, K, as a function of

the applied stress, a, and crack length, c.

Fig. 7 (a) Applied stress needed to break the last fiber of a bridging zone for fully and

partially bridged cracks. (b) Crack tip stress intensity factor corresponding to

the solutions in (a).
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Fig. 8 Crack opening displacement at mouth of crack loaded to the critical point A in

Figs. 6 and 7.

Fig. 9 Dependence of failure mechanism on the normalized fiber strength, fo Ib = I/SI,

for given initial flaw size, c.

Fig. 10 Critical fiber strengths needed for multiple matrix cracking mechanism, as a

function of the sizes of pre-existing flaws (fully bridged cracks), and the Weibull

modulus m.

Fig. I I Critical applied stress required for K = Kc in Fig. 6. Multiple matrix cracking

occurs for solutions within the shaded areas, i.e., above the curves labelled

cc = am in (a) and (b), and above and including the curves for fe = 2 and 1.6 in

• (c) and (d), respectively. The other, lower solutions corespond to catastrophic

* failure mechanisms. The areas containing dotted lines (not solutions for cracking

stresses) correspond to Region III of Fig. 9. Solutions to the left of this area

correspond to Region II, and those to the right Region IV.

Fig. BI Difference in applied stresses at points A and D in Figs. 6 and 7.

Fig. B2 Dependence of the crack length intercept, Ag, from Fig. BI on the Weibull

modulus, m.
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This article summarizes the current understanding of relationships between

microstructure and mechanical properties in ceramics reinforced with aligned fibers.

Emphasis is placed on definition of the micromechanical properties of the interface

that govern the composite toughness. Issues such as the debond and sliding

resistance of the interface are discussed based on micromechanics calculations and

experiments conducted on both model composites and actual composites.
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0X linear thermal expansion coefficient

Sfriction coefficient

V Poisson's ratio of composite

Y ratio of Young's modulus of fiber to matrix

(c matrix cracking stress

(u ultimate strength

a. applied stress

(5C  stress for transverse interface failure

It shear resistance of interface after debonding

(D (h) cumulative pull-out distribution

4) crack surface shear angle

.)(z, t) probability density function for fiber failure

- X interface fracture parameter = EH2/ oL

4 "V -phase angle of loading

* B Transition parameter

b Dundurs' parameter = Gj(1 - V2 ) -G 2 (1 - v,)
2 [G 1(1 - v) + G 20( 1

D matrix crack spacing

d debond length

E Young's modulus of composite

F non-dimensional stress

f fiber volume fraction

G shear modulus

G strain energy release rate

Gic critical strain energy release rate for interface

Gss steady-state strain energy release rate

82



01% Rockwell International
Science Center

Gfc critical strain energy release rate for the fiber SC5432.AR

Ccritical strain energy release rate for the matrix

Go intrinsic critical strain energy release rate for the interface

GR (Aa) increase in critical strain energy release rate with increase in crack length,

Aa.

H amplitude of interface roughness

h pull-out length

I. slip length

L gauge length

m shape parameter for fiber strength distribution

q residual axial stress in the matrix

qi residual stress normal to interface

R fiber radius

r distance from crack front

* S fiber strength

" So scale parameter for fiber strength distribution

T pull-out parameter

t stress acting on fiber between crack surfaces

U pull-out parameter

u crack opening displacement

v crack shear displacement

z distance from crack plane
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Practical ceramic matrix composites reinforced with continuous fibers exhibit

important failure/damage behaviors in mode I, mode II and mixed mode I/11, as

well as in compression. The failure sequence depends on the applied stress state as

well as on whether the reinforcement is uniaxial, laminated or woven. However,

the underlying failure processes are conveniently illustrated by the behavior of

uniaxially reinforced systems. The basic features are sketched in Fig. 1. The intent

of the present article is to provide an assessment of relationships between the

properties of the constituents (fiber, matrix, interface) and the overall mechanical

performance of the composite. At the outset, it is recognized that the composite

properties are dominated by the interface and that upper bounds must be placed on

the interface debond and sliding resistance in order to have a composite with

* attractive mechanical properties. A major emphasis of the article thus concerns the

definition of optimum properties for coatings and interphases between the fibers

* and the matrix, subject to high temperature stability and integrity. Residual stresses

in the composite caused by thermal expansion differences are also very important

and are confronted throughout.

The strong dependence of ceramic matrix composite properties on the

mechanical properties of the interface generally demands consideration of fiber

coatings and/or reaction product layers, at least for high temperature use. Thus,

while low temperature matrix infiltration procedures, such as chemical vapor

infiltration (CVI), can create composites that exhibit limited interface bonding and,

therefore, have acceptable ambient temperature properties, experience indicates that

moderate temperature exposure causes diffusion, coupled with the ingress of 02, N 2,

etc., from the environment, resulting in chemical bonding across the interface. The

resultant interphases consisting of oxides, nitrides, carbides (either separately or in
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combination) invariably have sufficiently high fracture resistance that desirable

composite properties are not retained. Consequently, a major objective of

continuing research on ceramic matrix composites is the identification of

interphases that are both stable at high temperature and bond poorly to either the

fiber or the matrix. Certain refractory metals and intermetallics seem to have these

attributes, as elaborated in the following chapters.

The basic philosophy of this article is that the overall mechanical behavior is

sufficiently complex and involves a sufficiently large number of independent

variables that empiricism is an inefficient approach to miucrostructural optimization.

Instead, optimization only becomes practical when each of the important damage

and failure modes has been described by a rigorous model, validated by experiment.

The coupling between experiment and theory is thus a prevalent theme. It is also

noted that this objective can only be realized if the models are based on

homogenized properties that describe representative composite elements, while also

taking into account the constituent properties of the fibers, matrix and interface.

Models that attempt to discretize microstructural details have little merit in the

context of the above objective. In this regard, the present philosophy is analogous to

that used successfully to describe process zone phenomena such as transformation

and microcrack toughening, 1-5 as well as ductile fracture,6,7 wherein the behavior of

individual particles, dislocations, etc., provides input to the derivation of

constitutive properties that describe the continuum behavior.

The behavior of the composite is intimately coupled to the basic features of

crack propagation and sliding along interfaces. This is demonstrated first by

examining the damage and fracture processes that occur in each of the important

modes depicted in Fig. 1. The results of these studies will indicate the need for

studying interface responses in judiciously selected test specimens. The basic

mechanics and the implications of tests used to study interface debonding and
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sliding are then presented. Finally, implications for the choice of matrices, fibers

and coatings that provide good mechanical properties are discussed. The tensile

properties are discussed initially in qualitative terms, involving consideration of

both debonding and sliding at fiber/matrix interfaces, as well as pullout, in

accordance with the sequence depicted in Fig. 2. Then, the special but important case

of unbonded fibers will be given quantitative attention.

I TENSILE BEHAVIOR OF UNIAXIAL COMPOSITES

1. DEBONDING AND SLIDING

* Present understanding of the "toughening" of ceramics by brittle fibers is

consistent with the debonding and sliding events illustrated in Fig. 2. To allow

,* crack bridging by the fibers, debonding at the fiber/matrix interface must occur in

preference to fiber failure at the matrix crack front. When this condition is satisfied,

the sliding resistance, T, of the debonded interface has the important role of

governing the rate of load transfer from the fiber to the matrix. Specifically, large T

enhances load transfer, causing the axial stress in the fiber to decay rapidly with

distance from the matrix crack plane. Consequently, weakest link statistical

arguments dictate that the fibers fail at locations close to the crack plane, thus

diminishing the vitally important pull-out contribution to the mechanical

properties. A small sliding resistance along the debond thus promotes high

"toughness".

The extent of debonding at the crack tip is typically small when residual

compression exists at the interface, but can be extensive when the interface is in

residual tension. However, more importantly, further debonding is typically

induced in the crack wake.8 The extent of debonding is again governed largely by
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the residual field. Residual radial tension encourages extensive debonding, whereas

in the presence of residual compression, debonding is stable. The extent of

debonding is determined by the friction coefficient and morphology of the debonded

interface.

Analysis of fiber debonding at the tip of a matrix crack (Sect. V.2) indicates

that debonding rather than fiber failure occurs, provided the fracture energy of the

interface, Gic, is sufficiently small compared with that of the fiber, Gfc (Fig. 3),9

G G IG < 1/4

There is no direct experimental validation of this requirement. However, various

* observations of crack interactions with fibers and whiskers support the general

features.10 , 11 In particular, experiments on LAS/SiC composites reveal that as-

* processed materials with a carbon interlayer debond readily and demonstrate

extensive pullout (Fig. 4a), whereas composites heat treated in air to create a

continuous SiO 2 layer between the matrix and fiber exhibit matrix crack extension

through the fiber without debonding (Fig. 5). Furthermore, composites with a thin

interface layer of SiO 2 having a partial circumferential gap exhibit intermediate pull-

out characteristics (Fig. 6). The associated constituent properties are summarized in

Table I. Based on these properties, the preceding arguments would indicate that

crack front debonding should not occur when a complete SiO 2 layer exists at the

interface; whereas, appreciable crack front debonding should obtain when the

C layer is present, in complete accordance with the observations. 10 , 1  The

composites with only a partial SiO2 interface layer are also interesting. For these

materials, Gic is related to the fraction of the circumference that bonds the fiber to

the matrix: typically 1/3. Reference to Table I and to the initial debonding
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requirement (Fig. 3) would thus indicate that debonding, while marginal, is

certainly possible.

2. STRESS-STRAIN CURVES

As alluded to above, the axial tensile properties are dictated by the mechanical

properties of the fiber/matrix interface, the strength of the fibers and residual

stresses due to different contractions of the fibers and matrix upon cooling after

fabrication. For suitable combinations of these properties, a non-catastrophic mode

of failure can be obtained, as characterized by the tensile stress-strain curve of

Fig. 7.12,13 Qualitatively, this failure mechanism is favored in composites with

1"weak" interfaces, high-strength fibers and tensile residual stresses normal to the

fiber/matrix interface. Changes in any of these parameters can lead to a transition in

* failure mechanism to one which is catastrophic, with linear stress-strain curve to

failure.

The initial departure from non-linearity in both types of stress-strain curve

results from cracking of the matrix. For the non-catastrophic mode of failure, the

first crack in the matrix extends indefinitely, breaking only a small fraction of

fibers.13,1 4 Further loading causes formation of periodic matrix cracks, with spacing

dictated by a characteristic stress transfer length associated with the bridging fibers.

These cracks divide the composite into "blocks" of matrix held together by intact

fibers. The increasing non-linear portion of the stress-strain curve is dictated by the

properties of the fibers, as qualified by frictional interactions with the matrix "block."

The ultimate strength is determined by fiber bundle failure, with the tail of the

curve corresponding to pullout of broken fibers. This type of failure mechanism has

been observed in a wide range of composite materials, including reinforced cements,

glasses and glass-ceramics. 15-18 If, on the other hand, a substantial proportion of the

88



Oil% Rockwell Internationa
Science Center

SC5432.AR

fibers break in the wake of the first matrix crack as it extends, then failure of the

composite is catastrophic. In this case, the ultimate strength is limited by the growth

of a single dominant crack and is determined by a fracture resistance curve. 19 The

nature of the resistance curve and the magnitude of the steady-state toughness is

governed by the zone of bridging fibers behind the crack tip. The composite

properties associated with the above failure mechanisms are discussed below, along

with the criteria that dictate the transition between mechanisms.

3. SOME BASIC MECHANICS

The opening of a crack bridged by fibers involves stretching of fibers between

the crack surfaces. This stretching may be characterized by a relation between the

stress, t, in the fibers and an average local crack opening displacement, u, as depicted

• in Fig. 8. The form of this relation depends on the details of the bridging

* mechanism and reflects properties such as fiber/matrix debonding and frictional

sliding, as well as elastic stretching of the fiber. The peak value, t = S, represents

the "strength" of the fiber, whereas the decreasing portion depends on the nature

and location of fiber failure.

The t(u) relations in Fig. 8 represent the range of behavior exhibited by brittle

reinforcing fibers. At one extreme, for a fiber that is sufficiently well bonded that no

debonding occurs when the crack circumscribes it, the t(u) relation is linear to

failure. At the other extreme, for a fiber that is not bonded at all to the matrix,

frictional forces resist pullout. Initially, the t(u) relation is an increasing function of

u until the fibers break, then t(u) decreases as the broken fibers pull out of the

matrix. Intermediate t(u) relations result from partial debonding and frictional

sliding over the debonded crack surfaces.

89



Rockwell International
Science Center

SC5432.AR

The influence of bridging fibers on fracture of the composite can be evaluated

by two equivalent approaches, both of which model the composite around the crack

as a continuum and employ the t(u) relation as the link between the constitutive

properties of the composite and its macroscopic continuum behavior. In one

approach, the stresses in the bridging fibers are viewed as crack surface closure

tractions which reduce the stresses at the crack tip. 14 The corresponding reduction

in crack tip stress intensity factor is calculated from these surface tractions using a

standard Green's function. The criterion for crack growth is obtained by setting the

resultant crack tip stress intensity factor in the matrix equal to the toughness of the

unreinforced matrix. The alternative approach is to use the J-integral to evaluate

the effect of the bridging tractions on the energy flux.20 ,2 1 In general, both of these

* approaches require numerical solution of an integral equation to calculate the crack

opening displacements, in order to specify the distribution of closure tractions over

the crack surface. However, for steady-state configurations, the J-integral approach

provides simple analytical results and is thus more useful.

4. MATRIX CRACKING

Matrix cracking originates from preexisting flaws, typified by a crack in the

matrix with intact bridging fibers over its entire surface. If the composite is subject

to uniform applied tensile stress, (Ta normal to the crack, the crack opening

displacement, u, and the crack surface pressure, p = ft, increase monotonically with

distance behind the crack tip. For sufficiently long cracks, u and p approach

asymptotic limits equal to ua and Oa (p cannot exceed Ga) at the mouth of the crack

(Fig. 9). This is a steady-state configuration; the stresses at the crack tip increase as

the applies stress increases, but are independent of the total crack length.

Consequently, the critical stress, 0 c, to extend the crack in the matrix is also
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independent of crack length. Therefore, provided oc <Sf, where S is the strength of

the fibers, the crack extends indefinitely in the matrix (i.e., completely across the

specimen) at constant a p)lied stress, without breaking fibers in its wake. If, on the

other hand, the preexisting matrix crack is not sufficiently long for the asymptotic

opening to be achieved at Ga = ;c, then the critical stress is a decreasing function of

crack length, as illustrated in Fig. 10.14

Analysis of steady-state matrix cracking provides the following relation from

which the stress Gc can be evaluated once the stress-displacement relation p(u) is

specified:20,22

U¢

qm (1 - f)/2 = c u -Jp(u) du

where Uc is the asymptotic crack opening corresponding to 0 a = 0 c, and qmc is the

fracture energy of the unreinforced matrix. The right-hand side of Eqn. (1) is the

complementary energy, represented by the shaded area in Fig. 11a. The critical

condition for matrix cracking is determined by the applied stress at which this area is

equal to Gmc (1 - f)/2. Thus, for a given matrix and volume fraction of

reinforcement, this area is constant and, consequently, the effect of changing the

nature of the bridging ligaments on the matrix cracking stress can be readily

deduced. Generally, changes that stiffen the loading portion of the p(u) curve must

increase (O, whereas changes to the maximum value of p(u) or to the region of the

curve beyond the peak have no influence on 0O.
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If the steady-state matrix cracking stress given by Eqn. (1) exceeds the stress, fS,

that can be supported by the fibers, then the fibers within a fully-bridged crack break

before the crack extends in the matrix. The consequent reduction in bridging forces

causes the crack tip stresses to increase (at constant applied stress), resulting in

unstable crack extension in the matrix, accompanied by further fiber failure.23 The

corresponding stress-displacement curve is linear to the peak load and failure is

catastrophic.

A preexisting crack without bridging fibers (e.g., a notch cut by a saw) grows in

the matrix initially without breaking fibers. A bridging zone develops behind the

advancing crack front, resulting in increasing closure tractions as the crack grows.

Consequently, the applied stress intensity factor needed for continued crack growth

increases, so that crack growth is dictated by an increasing crack resistance curve (R-

curve), as depicted in Fig. 12. In general, calculation of the rising part of the R-curve

* and the amount of crack extension needed to achieve steady state, requires

numerical solution of an integral equation to obtain the crack opening

displacements. 2 3 In composites with small bridging zones, the steady-state

toughness increment is of primary interest. However, in composites with large

bridging zones, the entire R-curve must be specified, because the steady-state

toughness may never be achieved by a stable crack (e.g., if the crack extension needed

is larger than the specimen width).

A simple analytical solution for the steady-state toughness increment has

been derived using the J-integral: 20 ,2 1

AGc = 2j0p(u) du (2)
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where u0 is the crack opening at the end of the bridging zone. For the steady-state

crack, u0 is the displacement above which the bridging forces are zero and A Gc is

given by the area beneath the p(u) curve, as depicted in Fig. 11b. Therefore, if the

p(u) relation is specified, then AGc can be evaluated without having to determine

the crack opening displacements.

6. TRANSITION IN FAILURE MECHANISM AND OPTIMIZATION OF
PROPERTIES

The results of the previous two sections allow some general conclusions to be

drawn concerning the dependence of steady-state toughness and steady-state matrix

cracking stress on microstructural properties. If we begin with a composite that fails

by the non-catastrophic, multiple matrix cracking mechanism, then, as discussed

previously, any change in the nature of the bridging ligaments that stiffens the

increasing portion of the p(u) relation causes the steady-state matrix cracking stress

to increase. However, if ac exceeds the peak in the p(u) curve, a transition in failure

mechanism must occur and the steady-state toughness is given by the area beneath

the p(u) curve. Then, further increase in stiffness of the increasing portion of the

p(u) relation would usually lead to a decrease in toughness, provided that the peak

value of p(u) remains constant. Therefore, the optimum properties (i.e., maximum

Gc or A Gc) occur in the vicinity of the transition between the two failure

mechanisms.

7. RESIDUAL STRESS

Residual microstructural stresses arise generally from thermal contraction

during cooling from an elevated processing temperature. The residual stresses
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before cracking are of opposite sign in the reinforcing ligaments and matrix, and the

average residual stress normal to a potential crack plane that spans many

microstructural units is zero. Therefore, in the absence of a bridging zone, the

microstructural residual stresses have no effect on the steady-state fracture

toughness. Moreover, the fracture mechanics analysis of bridging, expressed in

terms of the p(u) relation, is unaffected by the presence of residual microstructural

stresses. However, the residual stresses influence the p(u) relation and thereby the

magnitudes of the matrix cracking stress and the fracture toughness. 24

The influence of the residual stress on the p(u) relation is dependent upon

the mechanisms of interfacial sliding and fiber failure. An offset in the origin

always occurs by an amount

"Yo = -qE/Em (3)

where q is the axial residual stress in the matrix and E and Em are the Young's

modulus of the composite and the matrix. The remainder of the p(u) curve is

simply translated by 0o for some composites, but in general, the shape (J the p(u)

curve may be modified as well.

For composites in which residual stress translates the p(u) relation uniformly

by 0o, it is readily deduced from Fig. 11a that the matrix cracking stress Gc is either

increased (q compressive) or decreased (q tensile) by Go. However, the sign and

magnitude of the steady-state toughness change induced by the residual stress

depends on the mechanism of interfacial sliding and fiber failure, as summarized in

Table II.
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The transverse strengths of high toughness composites are generally very

low. There have been no systematic studies of this property. However,

experimental studies on composite laminates 25 indicate that the transverse cracks

typically propagate along the interface layer and through the matrix between

neighboring fibers. Furthermore, because the interfaces have sufficiently small

fracture energy to allow debonding, overall failure is preceded by interface failure.

This process occurs at a critical stress, Cc, which can be determined in a manner

analogous to that for the steady-state cracking of thin films, 26 to give,

oc - '/2EG1i /EcR - q (4)

* In some cases, q is sufficiently large that ac < 0 and the interfaces debond upon

cooling (Fig. 4).

Il TENSILE BEHAVIOR OF COMPOSITES WITH UNBONDED

REINFORCING FIBERS

Composites with little or no bonding at the fiber-matrix interface (Gic - 0) are

an important, special case that have been extensively studied, both theoretically and

experimentally, and thus merit separate consideration. The non-catastrophic failure

mechanism depicted in Fig. 7 is most likely in such composites. Moreover, with

fiber pullout being dictated by sliding, evaluation of the p(u) relation is relatively

straightforward compared with the composites that have significant debond

energies. In the latter case, rigorous analysis involves complications of interfacial
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fracture between materials of differing elastic constants, a topic that will be addressed

in Section V.

Composites comprising glass or glass-ceramic matrices and C or SiC fibers

have been observed to fall in the "weakly" bonded category. One particular

composite with SiC fibers and lithium-alumina-silicate (LAS) glass-ceramic matrix

has been extensively studied and has served as a reference for most comparisons

with theoretical modelling. 13, 15 In this composite, the fiber/matrix interface

contains a C layer (Fig. 4) which governs the "weak" interfacial bonding.1 0

1. PULLOUT

a Rigorous analysis of the p(u) relation governed by fiber sliding requires

consideration of fiber fracture statistics and the effect of residual and applied stresses

on the frictional resistance, Ts through their influence on the normal interfacial

stress. In principle, with a statistical distribution of fiber strengths, some fiber failure

occurs ahead of the crack tip as well as in the crack wake. Analysis of fiber failure

ahead of the crack has not been attempted, partly because the problem is complex

and partly because of a perception that fiber failures close to the crack plane that

cause pullout are most likely to occur in the crack wake. Such behavior has indeed

been observed in glass reinforced plastics.27 However, there is no direct evidence

that fiber failure ahead of the matrix crack can be neglected in ceramic matrix

composites.

Nevertheless, it is insightful to examine solutions for the p(u) relation based

on wake failure in composites having debonded interfaces subject to small, constant

sliding resistance, T, and negligible residual stress. 28  The analysis involves

calculation of the distribution of fiber failure sites as a function of applied stress, a,

and hence, the reduction in stress due to fiber failure. The fiber strengths are taken

96 19



Oil% Rockwell International
Science Center

SC5432.AR

to be defined by a Wiebull distribution with shape and scaling parameters m and So.

The results summarized in Fig. 13 indicate that the initial, rising portion of the p(u)

curve is dominated by intact fibers, the peak is dominated by multiple fiber failures,

analogous to bundle failure, and the tail is governed by pullout. The initial rising

portion of the curve is closely approximated by the limiting solution (m = oo) for all

m; 14

p 4,f'EfE' u1/2=F4zrf
2EfE2 12

P LRE'O(I_ f)'j (5)

where R is the fiber radius, f the volume fraction of fibers and Ef, Em and E are the

Young's modulus of the fibers, matrix and composite. However, the tail of the

curve is more sensitive to m: as m decreases, corresponding to a broader

distribution of fiber strengths, more fibers fail further from the matrix crack, causing

the extent of pullout to increase.

Correlation of calculated and experimentally measured pull-out lengths on

the fracture surfaces of broken test pieces provides a route for measuring the

statistical parameters and interfacial sliding resistance. 11 ,2 9 The calculated

cumulative probability that the pull-out length will be < h is plotted in Fig. 14. The

results indicate that the pull-out lengths tend to increase as m decreases, as expected.

Preliminary estimates of the effects of residual strain suggest that the pull-out length

usually decreases as the residual strain increases, when the residual stress at the

interface is compressive. However, specific trends are sensitive to m, as well as to

the friction coefficient gL. Measurements in the LAS/SiC system will be discussed

below.
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For composites in which the interfacial residual stress is tensile or zero and

the sliding resistance can be represented by an unique stress, "r, the p(u) relation is

given by Eqn. (5) and the steady-state matrix cracking stress evaluated from Eqn. (1)

is 12,14

1/3

T =  1- flEER E (6)

where Gmc is the fracture energy of the unreinforced matrix and q is the axial

residual stress in the matrix. Experiments conducted on a number of ceramic matrix

composites are consistent with Eqn. (6). When the interface is subject to residual

compression, -t depends on the local applied stress and the solution for ac is more

complex. However, to first order, T may be simply replaced by gq.

When the applied stress exceeds oc, multiple matrix cracking is expected1 2,14

and observed. 12,13 The saturation crack spacing D, is between one and two times the

distance over which the applied stress in the matrix builds up from zero at the crack

surface to the value for an uncracked composite. For unbonded fibers, this is the

distance over which sliding occurs at the interface. In this case, the range of crack

spacings is given by12

ac R/2f T < D < ac R/f "T (7)

Experimental observations 13 have again confirmed this feature of matrix cracking.

The most crucial aspects of the above interpretation of steady-state cracking

and of behavior prediction concern determination of T and q for actual composite
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systems. Both are difficult to measure. Two basic approaches have been used to

measure the sliding resistance T: indentation 30 ,3 1 and measurement of crack

opening hysteresis. 13 Both approaches are readily applicable when Gic and t are

small. The former method is most insightful when used with a nanoindenter

system, whereupon T can be obtained on single fibers either from a push through

force on thin sections or from the hysteresis in the loading/unloading cycle on thick

sections (Fig. 15a). This method has the obvious disadvantage that the fiber is in

axial compression so that the interface is also compressed during the test, with

attendant changes in 0C. However, this effect has been shown to be negligible for

ceramic composites systems having very small sliding stresses CE 5 1OMPa).

Calculation of T from direct measurement of crack opening hysteresis during load

cycling (Fig. 15b) avoids this complication because the fibers are subjected to axial

tensile loading. However, this approach also has several drawbacks. Measurements

are obtained only after matrix cracking and so correspond to a range of crack opening

displacements beyond those that dictate formation of the matrix cracks.

Furthermore, interpretation of the results is complex when appreciable fiber failure

accompanies matrix cracking. Consequently, other approaches applicable to

composites having larger T are being investigated. One of these is discussed in the

following section.

3. ULTIMATE STRENGTH

Foliowing multiple matrix cracking, the axial stress in each of the fibers varies

from the maximum, equal to a0 0 /f, between the crack surfaces to a minimum,

> 0. Ef/E, halfway between adjacent matrix cracks. The probability and location of

fiber failure subject to weakest link statistics in such a stress field can be readily

derived. However, calculation of the maximum load supported by the composite
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(i.e., a bundle of such fibers) requires that the stress redistribution caused by the

fractured fibers be modelled. Such an analysis has not been attempted.

Nevertheless, a lower bound for the maximum load can be derived by simply

allowing failed fibers to have no load bearing ability. Then, a modified bundle

failure analysis yields the following expression for the ultimate strength:

S[ ( 1 m-,D/RS)] (8)

where

S(RS/,D) - (A 0/2 rRL) (RSo/tD)il - (1 - tD/RS)m1

with L being the gauge length. In the one composite system for which analysis of

the ultimate strength has been performed (LAS/SiC, , ' 2 9 Eqn. (8) agrees quite well

with measured values.

The ultimate strength anticipated from the above argument is expected to be

influenced by the residual stress. Specifically, in systems for which the fiber is

subject to residual compression, the axial compression should suppress fiber failure

and elevate the ultimate strength to a level exceeding that predicted by Eqn. (8).32

This effect may be estimated by regarding the matrix as clamping onto the fiber and
A

thus, simply superposing the residual stress onto S.
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When mode I failure is dominated by propagation of a single matrix crack,

accompanied by fiber failure and pullout, the mechanical properties are

characterized by a resistance curve. The entire R-curve has been evaluated for fibers

with a single-valued strength, S (i.e., m = oo) and small sliding resistance, T.

Although this analysis does not account for pullout of broken fibers (fibers must fail

between the crack surfaces for m = oo), some useful trends with microstructural

properties are evident. The steady-state toughness increase obtained from Eqns. (2)

and (3), is

AGc 2
6rE fEc (9)

and the amount of crack extension needed to achieve steady state is

/3r 2(1 -54

Ac G f) E.,
L fEE f (10)

It is noteworthy that both A Gc and Ac increase with the ratio R/T, whereas the

steady-state matrix cracking stress decreases (Eqn. 6). Furthermore, a simple

relationship exists between the steady-state toughening and the matrix cracking

stress (Fig. 16).33 These results indicate that, for reasonable values of fS/ac (< 3), the

toughening ratio is, at most, 6 and more typically, 3. It is thus concluded that

bridging alone does not permit order of magnitude increases in toughness. Instead,

the very high toughness obtained in various materials involves an important

contribution from pullout, caused by fiber failure away from the matrix crack plane.
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The steady-state toughness increase when fibers have a statistical distribution

of strengths has been evaluated using the p(u) relations in Fig. 13. The expressions

are lengthy in form, but general trends can be specified. The degree of toughening

always increases as the scale parameter So increases, thereby establishing thatigh

fiber strengths are invariably desirable. However, the dependence on T and R is

ambivalent. The essential details are highlighted by considering separately the

contributions from broken and unbroken fibers to the toughness integral. 28 The

component due to unbroken fibers is, Aq b [Rm- 5 /t m-2] 1 /mn+ 1 . A notable feature is

the inversion in the trend with T that occurs at m = 2, and with R at m = 5. The

corresponding pull-out contribution from broken fibers can be examined by

recognizing that the toughening has the form

*Ab - (h) 2 (T/R) (11)

The calculations of pull-out lengths summarized in Fig. 14 then lead to the result

that the toughness is proportional to

I

[Rm -3

The toughness thus increases with increasing R when m > 5, and decreases when

m < 3. Conversely, it increases with increasing T when m is very small (5 1), and

decreases when m > 2. These limits arise because of the competing importance of

the contribution to toughness from the intact bridging fibers and the failed fibers

that experience pullout. Knowledge of the magnitude of the statistical shape

parameter, m, for the fibers within the composite is therefore a prerequisite to

optimizing the shear properties of the interface for high toughness.
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The shape of the rising R-curve is expected to be sensitive to m; in general,

the amount of crack growth needed to approach steady state must increase with

decreasing m. However, the actual slope of the resistance curve has not yet been

evaluated, because numerical methods are needed to determine the upper limit of

Eqn. (2), as dictated by the crack opening at the end of the bridging zone. Further

research concerning this phenomenon is a major priority.

5. PROPERTY TRANSITION

Non-linear macroscopic mechanical behavior in tension is most desirable for

structural purposes and thus, analysis of the transition between this and the linear

response is important. The transition is dependent upon the nature of preexisting

" defects in the composite, in particular the length of unbridged crack. However, a

useful lower bound, which applies to preexisting defects that are fully bridged, is

given by the requirement that the steady-state matrix cracking stress be smaller than

the ultimate strength in order to obtain the non-catastrophic failure mode. For

m = oo, this condition is given by setting ac in Eqn. (4) equal to the fiber strength S.

Equations (6) and (9) for steady-state matrix cracking and asymptotic

toughening (at m = oo) allow the general trends for property optimization, outlined

in Sect. II.1, to be quantified. The variation in strength of a composite with the ratio

T/R is shown schematically in Fig. 17. In the region of non-catastrophic response,

the matrix cracking stress increases with the parameter T/R, whereas the ultimate

strength is not affected (for small m the ultimate strength is a weakly decreasing

function of T). At a critical value of T/R, where ac exceeds Sf, the transition to linear

response occurs. With further increase in T/R, the fracture toughness decreases (and

the strength also decreases if the preexisting flaws remain unchanged). Therefore,

optimum values of T/R exist near the transition point.
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The behavior illustrated in Fig. 17 has been investigated systematically by heat

treating the LAS/SiC composite under conditions where the interfacial graphite

layer J..appears and is replaced by SiO 2 (Figs. 4-6), resulting in an increased

frictional sliding resistance. The variation in tensile mechanical properties with

heat treatment time are shown in Fig. 18. The influence of heat treatment on

interfacial properties can be inferred from measurements of fiber pull-out lengths in

broken test pieces and comparison with the calculations of Fig. 14.29 The results

reveal that the pull-out distribution gradually changes as the gap caused by C

removal is filled with SiO 2 (Fig. 19). In particular, the median length decreases and

the proportion of fibers that actually pull out exhibit length distributions consistent

with the predictions of the weakest link fiber failure analysis, such that the interface

T increases by about an order of magnitude when a partial SiO 2 layer replaces C.

This change in t and the accompanying dramatic change in the mechanical

properties of the composite are consistent with the response depicted in Fig. 17.

6. RESIDUAL STRESS

Large mismatches in thermal expansion coefficient between fiber and matrix

are clearly undesirable. In particular, relatively large matrix contraction,

am/af > > 1, causes premature, or even spontaneous, matrix cracking (Eqn. 4). Such

behavior is not necessarily structurally detrimental, but concerns regarding thermal

fatigue, the ingress of environmental fluids, etc. have discouraged the development

of materials having these characteristics. Conversely, relatively small matrix

contractions, af/am > > 1, thermally debond the fiber from the matrix. When

sufficiently extensive, the resultant radial separations negate the influence of the

fibers. Consequently, values of fLQM close to unity are required. Indeed, mode I

axial properties subject to an interface that easily debonds and slides freely along the
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debond involve an optimum residual stress, with a maximum matrix cracking

stress, when the interfacial stress is compressive, given by, 34

1/2

0,/E = (2/3) [f9Gmc/XEmR] (12)

where 1. = 1 - (1 - E/Ef)/2. When af/rn > > 1, such that the interfacial stress is

tensile, asperities on the debond surface may provide a discrete sliding stress, T, that

depends on such features as the asperity amplitude. For such cases, the optimum

residual strain has not been determined.

The fracture resistance is also influenced by the residual stress. However, the

sign and magnitude of the change in toughness induced by residual stress depends

on the mechanisms of interface sliding and fiber failure, as summarized in

Table 11.24 Subject to adequate debonding, the salient result for ceramics reinforced

with brittle fibers is that A Gss is unaffected when the interfacial stress is tensile and

the interface is characterized by an unique T, whereas A Gss usually decreases with

increasing compressive interfacial residual stress because the pull-out lengths

dccrease, as apparent when T is equated to gq.

Residual stresses in composites are difficult to measure. Even when the

composite is fully elastic, so that no interface debonding or sliding occur on cooling,

the residual stresses at the surfaces are complex. Consequently, methods such as

X-ray diffraction that probe thin surface layers are difficult to interpret. Neutron

diffraction, which typically averages over a much larger volume of material, is

usually more satisfactory. Measurement difficulties are exacerbated when

debonding and sliding occur on cooling. These processes initiate preferentially at

the surface and spread into the body along the interface, thereby alleviating the

residual stress over the debond/slip length. For small T and Gc, these lengths are
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large (many multiples of the fiber diameter). 13 Consequently, a valid measure of the

residual stress can only be obtained using processes that penetrate well into the

material. One independent approach for measuring q that has merit in some cases

involves use of the same crack opening measurements described by Fig. 15b.

Specifically, the residual axial stress in the matrix is related directly to the stress at

which crack closure occurs. 13 The method is, however, restricted to materials for

which matrix cracking is not accompanied by extensive fiber failure.

IV MIXED MODE FAILURE

1. MODE II FAILURE MECHANISMS

Flexural tests performed on uniaxial composites reveal that a shear damage

mechanism exists (Figs. 1, 20)35 and that such damage often initiates at quite low

shear stresses, e.g., 20MPa in LAS/SiC. The damage consists of en echelon matrix

microcracks inclined at about 7r/4 to the fiber axis (Fig. 21). With further loading,

the microcracks coalesce, causing matrix material to be ejected and resulting in the

formation of a discrete mode II crack. The crack is defined by the planar zone of

ejected matrix. The crack also has a microcrack damage zone similar to that present

upon crack initiation.

The microcracks that govern mode ]I failure are presumably caused by stress

concentrations in the matrix and form normal to the local principal tensile stress,

but then deflect parallel to the mode II plane and coalesce. An adequate model that

incorporates the above features has not been developed. Consequently, the

underlying phenomena are briefly noted without elaboration. The stress

concentrations in the matrix have magnitude governed by the elastic properties, the

fiber spacing and the interface strength. The growth and coalescence of the
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microcracks is influenced by the matrix toughness Gmc. The shear strength

seemingly decreases as the mode I toughness increases.

2. DELAMINATION CRACKING

Delamination is a common damage mode in the presence of notches 13,2 5

(Figs. 1 and 20). Delamination cracks nucleate near the notch base and extend stably.

Analysis of such data is based on the solutions used for mixed mode interface

cracking in beams,3 6 modified to take account of the elastic anisotropy. The fracture

resistance is found to increase with crack extension and, because of the large

component of shear loading, the fracture mechanism is essentially identical to that

noted for mode II failure, involving matrix microcracking and spalling. The

existence of a resistance curve is attributed to intact fibers within the crack that resist

the displacement of the crack surfaces and thus, shield the crack tip in a manner

analogous to fiber bridging in mode I. However, the fracture energies are typically of

the same order as the fracture energy of the matrix, e.g., - 20 Jm- 2 for LAS matrix

composite.

V INTERFACIAL DEBONDING AND SLIDING

1. MECHANICS OF INTERFACIAL CRACKS

The results and discussion of the preceding sections point to several problems

involving debonding along interfaces that are central to determining mechanical

properties of composites. Such debonding occurs both at the tip of a matrix crack

and in the crack wake (Fig. 2). It typically involves two materials with different

elastic constants and mixed shear and tensile loading. Furthermore, since the
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interface can have lower fracture resistance then either the matrix or fibers, the

debond crack can continue to extend under mixed mode conditions rather than

seeking a plane normal to the principal tensile stress. Therefore, it is necessary to

direct attention to the dependence of fracture resistance, Gic, on the mix of shear and

tensile loading.

The mechanics of cracks at bimaterial interfaces was derived in a series of

studies in the 1960s 3 7 - 4 1 and has received renewed interest and elucidation

recently.4 2- 4 5 An additional complexity in the fracture mechanics arises from the

fact that the shear and tensile components of stress and displacement along the crack

plane ahead of, and behind, the crack tip are not decoupled as they are in linear

elastic fracture mechanics for homogeneous materials, i.e., a tensile (mode I) remote

loading generally results in both tensile and shear stresses and displacements near

the crack tip. Moreover, the mix depends on the crack length as well as the

mismatch in elastic constants and the position relative to the crack tip. Despite this

complication, it is possible to specify the crack tip field in terms of a position-

independent stress intensity factor, K, which contains all of the information

concerning applied loads and the geometrical configuration. However, to

accomplish this, the stresses and displacements are expressed in complex notation,

with opening and shear components as the real and imaginary parts. In this

scheme, the ratio of opening to shear crack tip displacements (u and v respectively,

Fig. 22) is described by a phase angle 0 = tan-l(v/u).

Because of he interdependence of the opening and shearing components of

the remote loading and the crack tip displacements, 4 differs from the phase angle

of K (W = tan-'(K2/KI)) by an amount that depends on the mismatch of elastic

constants and position:
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= I+ Elnr+ tan- 1 2E (13)

where

- In(

and

G, (1 -2v 2) -G 2 (1 - 2v)
b = 2[G1 (1- vj +G2 (1- v 2)]

* b is one of Dundurs' parameters4 6, with G the shear modulus, V the Poisson's ratio,

* and r the distance from the crack tip. Because of the In r term, which describes a

slow oscillation in the ratio v/u with r, the value of V is dependent upon the choice

* of length units. However, this does not present a difficulty provided a consistent

choice is maintained.

In most practical examples, the parameter e is small, often less than 0.01. 4 3

Consequently, several schemes for ignoring the effect of e in Eqn. (13) have been

proposed, so that if represents the relative proportions of mode H and mode I in the

crack tip field.41,4 2 However, even in this case, the proportion of mode I to mode II

in the crack tip field differs from that in the applied, remote field.

The strain energy release rate can be calculated in terms of the crack surface

displacements: 42

7c(1+4e) (u 2 +v 2)

q= 8r [(1 - V )/G +(1 - v2)/G 2] (14)
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Alternatively, G can be expressed in terms of the modulus of the stress intensity
2 2 2

factor, X112 = K1 + K 2
, in a form similar to that for homogeneous materials: 4 1

1 2

16 cosh 2 (irE) (15)

where

C =8[ E + E 2

The criterion for crack growth is taken as a critical strain energy release rate,

Gic. In general, this value is dependent on the ratio of shear to opening stress, i.e.,

Gic is a function of Wj. An example of a calculated dependence and some

experimental data for a glass/epoxy system are shown in Fig. 23.

2. DEBONDING MECHANICS

Debonding solutions are required for axisymmetric configurations,

representative of the debonding of fibers (Fig. 3), as well as for planar cracks

characteristic of macroscopic delamination (Fig. 20). In both cases, G and W are

strongly influenced by the residual stress. Furthermore, when the phase angle

becomes large, l -- I/2, frictional sliding and crack surface locking effects become

important. 4 7 A comprehensive set of solutions that fully encompass the spectrum

of residual stress and of frictional sliding relevant to composites does not yet exist.

Some known solutions are described below.

Axisymmetri-c solutions exist for composites with interfaces subject to

residual radial tension. wherein a net crack opening exists for the full range of
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applied tensile loads, elastic moduli and fiber volume fractions. 8 All solutions have

the general features that G is small, but non-zero, when the debond length

approaches zero and increases to a steady-state value Gss when the debond length d

exceeds -R (Fig. 24). Such behavior indicates the insightful bound that a preexisting

debond larger than -R must extend without limit when Gss exceeds Gic at the

appropriate AV. The basic trends in Gss and W relevant to wake debonding,

determined using finite elements, are summarized in Fig. 24. The variables in the

analysis are: the ratio, 7, of Young's modulus for the fiber, Ef, to that of the matrix,

Er, the fiber volume fraction, f, the stress-free (residual) strain (AaAT), the stress

imposed on the fiber, t, and the Poisson's ratios Vm and Vf. Note that the phase

angles are typically large, indicative of a large ratio of shear to opening.

Rigorous axisymmetric solutions for interfaces subject to residual radial

compression have not been derived. However, some approximate solutions based

on a modified shear lag approach are insightful.4 8 This approach has merit when

the friction coefficient g is small (la Z 0.2). For this case, complete crack opening

does not occur until t reaches a critical value tc given by;

tc/Ef e = 1/)f (16)

For t > tc, steady state obtains for long debonds and the solutions given in Fig. 24 are

directly applicable. For t < tc, the debond crack is subject to normal compression and

resultant friction. In this case, G diminishes with increase in debond length, a,

representative of stable crack growth:

G/E R(AaA)' - F 2/4 + F/2- gd0-f) (1-vF)
R [(1 - f) (1- 2v) + 1+ f] (17)
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F = (t-q)/Ef AAT

and q is the axial residual stress in the matrix, as governed by AaAT, f and Y". In this

instance, G is strictly mode II and debonding should thus be predicted by equating G

to Gic at 4M = 7r/2. Such predictions have not been attempted. However, it is

insightful to note that, for "weak" interfaces (Gic < < Gfc), the debond length and the

slip length, k, are closely related, with k given by;4 8

/R =F [(1 -- f) (1 - 2v) + 1 + f]
2gt(1 - vF) (1 - f) (18)

* For the plane delamination problem, a comprehensive analysis exists,4 4

expressible in terms of imposed axial forces and bending moments. The solution

having greatest relevance to problems in ceramic matrix composites involves the

four-point bending of a bimaterial beam with debond cracks between the inner

loading points. 3 6 ,44 The general form of the solution (Fig. 25a) indicates that G

rapidly acquires a steady-state level. Trends in the steady-state value Gss are

summarized in Fig. 25b. The corresponding non-dimensional phase angle,

IV* = AV + ElnR is - 0.68 for all L when ActAT = 0. Clearly, the elastic properties

have strong influences on both Gss and W.

Initial debonding along the interface rather than extension of the notch across

the interface is expected, provided that Gic at Wi ir/4 is less than the critical strain

energy release rate for the lower material (the fiber), Gfc, by a ratio that depends

somewhat on the elastic properties of the fiber and matrix. For the elastically

homogeneous case, debonding occurs in preference to fiber failure when9

112 35



Oi% Rockwell International
Science Center

SC5432.AR

Gic/Gf Z 1/4

The extent of fiber debonding at the tip of a matrix crack has not been

rigorously analyzed. However, useful insights can be gained by interpolating

between the above initiation condition and an existing solution for long cylindrical

debonds (at IV = 0) in a crack tip field. The latter solution indicates that debond

lengths substantially larger than the fiber diameter result in very small values of Gi

at the interface compared with that at the matrix crack front, Gm, given

approximately by (Fig. 26);

Gi/Gm - 0.1R/d (19)

Consequently, it is surmised that the Gic required for continued debonding decreases

rapidly as the debond length increases. Extensive crack front debonding thus

appears unlikely in the absence of residual stress, even when Gic is quite small. This

conclusion about crack front debonding is substantially changed when residual

stress exists.8

Initiation of debonding is a necessary but not sufficient condition for good

composite properties. It is also required that the debond crack remain in the

interface and not kink into the fiber to cause premature fiber rupture, either along

the crack front or in the crack wake. Analysis of this problem4 5 indicates that

kinking out of the interface is not expected when the above inequality is satisfied.
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3. MEASUREMENT OF THE INTERFACE FRACTURE RESISTANCE

The preceding mechanics analyses provide the essential background needed

for the measurement of debond resistances relevant to composite performance.

Three basic test methods have been identified as being convenient for providing

data at Wi = 0, r/2 and n/4 49 ,50: compact tension tests, flexural tests and pull-out

tests. Two critical aspects of interface fracture testing are the initial introduction of a

well-defined debond crack and measurement of the residual stress. Another

important testing issue concerns friction at the loading points.49 A procedure that

takes frictional effects into account, based on measurements of the hysteresis in

loading and unloading compliance has been developed and validated. These

o rigorous demands on the testing needed to generate valid Gic data, have limited the

- extent of available results. Preliminary results indicate that Gic tends to increase
4

with increase in AV, especially as Nf -- 7r/2, and furthermore, that the rate of increase

depends on the morphology of the fracture interface. 42 Specifically, rough fracture

interfaces cause Gic to increase more rapidly with increase in X. Analysis of this

phenomenon 42 has modelled the sliding and locking of crack surface asperities that

make contact at large phase angles. The material parameter that governs the

magnitude of this effect is,47,50

X = EH 2/GoL (20)

40

where H is the amplitude and L the wavelength of undulations on the fracture

interface and Go is the intrinsic fracture resistance of the interface. Specifically, large

X results in the greatest effects on qic(4). The quantity X is a measure of the length

of the contact zone, which increases as either H increases or Go decreases.
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The magnitude of Go is clearly influenced by the presence of interphases, the

atonistic structure of the interface, etc. However, as yet, residual stress and

morphological influences have not been sufficiently decoupled to explore these

basic relationships. Nevertheless, preliminary measurements reveal that Go is

typically quite small for oxides bonded to refractory metals (Nb), to intermetallics

(TiAl) and to noble metals (Au, Pt), as well as for oxides bonded with inorganic

glasses and for carbides and nitrides having graphite and boron nitride interlayers.

V MICROSTRUCTURE DESIGN

Many of the microstructural parameters that control the overall mechanical

properties of ceramic matrix composites are now known and validated, as elaborated

in the preceding sections. Consequently, various general remarks about

microstructure design can be made. However, important aspects of damage and

failure are incompletely understood because there have been few organized studies

of failure in mode II, mixed mode and transverse mode I. The remarks made in this

section thus refer primarily to axial mode I behavior with no special regard to

attendant problems in other loading modes.

The basic microstructural parameters that govern mode I failure are the

relative fiber/matrix interface debond toughness, Gic/ Gfc, the residual strain, AaAT,

the friction coefficient of the debonded interface, ., the statistical parameters that

characterize the fiber strength, So and m, the matrix toughness, Gmc, and the fiber

volume fraction f. The prerequisite for high toughness is that Gic/ Gfc Z 1/4 (1" = 1).

Subject to this requirement, the residual strain must be small (AaC Z 3 x 10-6 C-1) and

negative so that the interface is in tension. Furthermore, the friction coefficient

along the debonded interface should be small (gt Z 0.1). The ideal fiber properties are
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those that encourage large pull-out lengths, as manifest in an optimum

combination of a high median strength (large So) and large variability (small m).

The above conditions can be satisfied, in principle, by creating interphases

between the fiber and matrix, either by fiber coating or, in-situ, by segregation. The

most common approach is the use of a dual coating: the inner coating satisfies the

above debonding and sliding requirements, while the outer coating provides

protection against the matrix during processing. However, the principal challenge is

to identify an inner coating that has the requisite mechanical properties while also

being thermodynamically stable in air at elevated temperatures. Most existing

materials have either C or BN as the debond layer. However, both materials are

prone to degradation in air at elevated temperatures. More stable alternatives have

been proposed (e.g., Nb, Mo, Pt, NbAl) but have not been evaluated.

*
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TABLE I

Constituent Properties of LAS/Nicalon Composites

E(GPa) Gc (Jm ' 2) a (K-1)

Fiber

(Nicalon) 200 4 - 8* 4 x 10-6

Matrix

(LAS) 85 40 1 x 10-6

Interface

Amorphous C -<1 *

Amorphous SiO 2  80 8 1 x 10-6

Determined from fracture mirror radii
• Determined by indentation: takes into account initial thermal debonding

(Fig. 23)
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TABLE II

Effect of Residual Stress on Toughness

RESIDUAL STRESS
IN FIBER

STRESS/DISPLACEMENT RUPTURE
LAW CONDITION COMPRESSION TENSION

Linear Stress Decrease Decrease

Displacement Increase Decrease
*

Frictional Surface

With PullOut Roughness Stress Negligible

Coulomb
Friction Stress Decrease
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TABLE III

Constituent Properties of Whisker-Reinforced Ceramics

E(GPa) Gc (Jm"2) cc (K-1)

A1203 400 20-30 7 x 10-6

Si 3N 4  300 60-80 3 x 10-6

SiC 400 15-20 4 x 10- '

Amorphous interface 70 4-8 --
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Fig. 1. A schematic illustrating the failure modes observed in high toughness
uniaxially reinforced ceramic matrix composites

a) tension

b) flexure

Fig. 2. A schematic illustrating the initial debonding of fibers at the crack front
and fiber debonding in the crack wake

Fig. 3. The critical energy release rate required for crack front debonding

Fig. 4. Interfaces and pullout in a composite consisting of LAS matrix and SiC
(Nicalon) fibers: As-processed indicating C interlayer, thermal
debonding and extensive pullout

Fig. 5. LAS matrix/SiC fiber composite heat treated in air for 16 hours at 800°C
indicating a complete SiO 2 layer and no pullout

Fig. 6. LAS matrix/SiC fiber composite heat treated in air for 4 hours at 800'C
indicating a partial Si0 2 layer-with gap-and variable pullout

Fig. 7. A tensile stress-strain curve for a "tough" ceramic composite

Fig. 8. A schematic illustrating various trends in crack opening with stress

Fig. 9. Steady-state cracking indicating the uniform opening Ua in the crack
wake

Fig. 10. Variation in matrix cracking stress with crack length

Fig. 11. Stress, crack opening curves for

a) Steady-state cracking and

b) Steady-state toughening

Fig. 12. A schematic resistance curve for crack extension in a uniaxial composite

Fig. 13. Non-dimensional stress, crack opening curves for bridging plus pullout
for various values of the statistical shape parameter, m

Fig. 14. The cumulative pull-out distribution for several values of the shape
parameter, m
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Fig. 15. a) A load/unload cycle for nanoindentation of a fiber

b) Crack opening hysteresis for a composite with intact fibe~r~r.u g

the trends in both sliding resistance and residual stress

Fig. 16. Trends in toughening ratio with matrix cracking stress

Fig. 17. Trends in composite properties with T/R for large m

Fig. 18. Effects of heat treatment on the tensile stress-strain behavior of LAS/SiC
composites

Fig. 19. Histograms indicating trends in pull-out length with heat-treatment

Fig. 20. Delamination cracking in notched flexure tests

Fig. 21. Matrix microcracks that precede mode I failure in tough composites

Fig. 22. The displacement of the surface of a crack at a bimaterial interface
indicating the shear and opening displacement that accompany most
external loading conditions

Fig. 23. Experimental data for the fracture energy of a glass/epoxy interface
* compared with prediction based on a crack surface locking model

Fig. 24. Trends in energy release rate and phase angle for loads exerted on a fiber
in the crack wake
a) Effects of debond length

b) Effects of applied stress t on steady-state Gss

c) Effects of applied stress t on phase angle XV in steady-state regime

d) Effects of elastic modulus ratio of Gss and V

Fig. 25. Energy release rates for a bimaterial beam tested in flexure

a) Trends with crack length for an elastically homogeneous system
b) Trends in steady-state energy release rate, Gss with modulus and

thickness ratios

Fig. 26. The energy release rate for crack front debonding
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AN INDENTATION METHOD FOR MEASURING RESIDUAL STRESSES

IN FIBER REINFORCED CERAMICS

D.B. Marshall

Rockwell International Science Center
1049 Camino Dos Rios

Thousand Oaks, CA 91360

ABSTRACT

Fiber sliding in the presence of residual stresses in ceramic composites is

* analyzed. The results indicate that measurements of the force-displacement relation for an

indenter loaded onto the end of a fiber can be used to calculate the magnitude of the

* residual axial stress in the fiber.
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1.0 INTRODUCTION

Residual stress in fiber reinforced composites, resulting from differential

contraction of the fibers and matrix during cooling from the fabrication temperature, are

notoriously difficult to measure, yet they are probably the most critical property for

determining the mechanical performance and integrity of the composite. Some methods

that have been used to estimate residual stresses include: observation of cracking, 1,2

measurement of bending in nonsymmetric composites, 3 x-ray diffraction, 4 ' 5 and in-situ

measurement of crack opening displacements as a function of applied stress. 2  The

measurement of lattice strains by x-ray diffraction is one of the most attractive of these,

but it is restricted to near-surface regions (depth < - 10 jim) and to composites with a

suitable crystalline phase in the matrix. Measurements of crack opening displacements are

* also attractive, but require very accurate displacement measurements.

An alternative approach, which has not been exploited, is to measure relative

displacements of the fibers and matrix at a free surface normal to the fibers, during either

mechanical loading or thermal cycling. The mechanical loading envisioned here involves

pushing on the ends of individual fibers with an irelenter while measuring force and displace-

ment continuously, a technique that has been used recently to obtain a measure of inter-

facial debonding and frictional sliding resistance in ceramic composites.6,8-10 The analysis

used in that work to relate the interfacial properties to the force-displacement response

was applicable to composites that were free of residual stresses and in which bonding

between the fibers and matrix was weak or absent. The force-displacement relation would

be modified in the presence of residual stresses. The purpose of this paper is to evaluate

this modification and thereby provide a means for extracting the magnitude of the residual
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stress from such measurements. A similar approach is being taken elsewhere to determine
residual stresses and interfacial properties from displacements induced by thermal cycling. 7

2.0 ANALYSIS OF FORCE-DISPLACEMENT RELATIONS

The indentation pushing experiment is shown schematically in Fig. I. Application

of force, F, to the indenter causes sliding between the fiber and matrix if the interface is

either not bonded or sufficiently weak to allow debonding. The total displacement of the

indenter, UT, is the sum of the sliding distance, u, and the penetration, Up, (elastic and

plastic) of the indenter into the fiber. Therefore, comparison of these measured values of

UT with calculated sliding distances requires subtraction of the indenter penetration. This

can usually be done by calibrating the indenter penetration in a separate experiment. 6

* In order to illustrate the role of residual stresses in these experiments, somewhat

idealized interfacial properties will be assumed. Interfacial sliding will be taken to be

controlled only by a constant frictional sliding resistance, T, so that sliding between matrix

and fibers occurs wherever the shear stress parallel to the interface exceeds T. Under this

condition, application of a force, F, to the end of a fiber causes sliding, beginning at the

surface and extending a depth i that increases as F increases (Fig. 2a). We will assume fur-

ther that the frictional stress, r, is not significantly altered by Poisson's expansion of the

fiber resulting from axial stresses, and that the sliding length is sufficiently large compared

with the fiber radius, R, that the indentation forces can be taken as uniformly distributed

across the end of the fiber, the elastic strains beyond the end of the slip length can be

neglected, and the axial strains in the fiber can be obtained from a shear lag model in which
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only normal axial stress, a, exists in the fiber (shear stresses being concentrated at the

t interface). These approximations have been examined in detail elsewhere and have been

shown to be appropriate for optimally toughened ceramic composites such as glasses and

glass ceramics reinforced with carbon and SiC fibers, 6 ,' - 10

The sliding displacements can be usefully measured while the force is increased

monotonically to a peak value Fm and then cycled to zero and back to Fm , as depicted in

Fig. 3. Subsequent load cycles retrace the first, provided the sliding resistance remains

constant.

The force-displacement relations of Fig. 3 are most conveniently evaluated by

referring to the plots shown in Fig. 2 of the axial strains in the fibers as a function of

distance from the indented surface. The displacements are obtained by integration of these

strains, as represented by the shaded areas in Fig. 2. The strain c at the end of the fiber is
4

given by

£0 = F/rR2Ef (1)

where R is the fiber radius and Ef is the Young's modulus of the fiber, whereas the slope of

the curve £(z) within the sliding region is obtained from the requirement for equilibrium of

the fiber:
6

dc/dz = do/dz = -2T/REf (2)

With Eqs. (1) and (2) the displacement of the fiber below the original specimen surface dur-

ing initial loading (Fig. 2b) can be written
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t u = F2  (3a)

where

s = l/4-n2R 3TEf . (3b)

If the force applied to the end of the fiber is increased to a maximum, Fm, (with

corresponding strain co in Fig. 2c and displacement uo ) and then decreased, sliding occurs

in the reverse sense during unloading, beginning at the surface and extending a distance s

along the interface. The reversal of sliding direction causes the slope of £(z) to change

sign, as shown in Fig. 2c, resulting in the force-displacement relation listed in Table I and

* plotted in Fig. 3. After complete unloading, half of the original displacement is recovered.

Upon reloading, forward sliding begins again at the surface. However, the slope of the

reloading curve in Fig. 3 (i.e., F2/Au) is only half of that of the original loading curve

because of the strain gradient that remained in the fiber after unloading.

In a composite with preexisting axial residual stresses and a free surface normal

to the fibers, the fibers would slide spontaneously so as to protrude from the surface if the

stress in the fibers was compressive, and sink below the surface if tensile. ": ne protruding

fibers or matrix are of course removed during actual cutting and polishing. However, the

preexisting strain distribution is modified by the fiber sliding, as illustrated in Fig. 2e; the

residual strain is constant (equal to) far from the surface, but decreases linearly to zero

at the surface, with the magnitude of the slope given by Eq. (2). The strain distributions

and corresponding displacements during loading, unloading and reloading of the indenter are

9
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shown in Fig. 2e to 21, and the resultant force-displacement relations are summarized in

Tables 2 and 3. In these equations the preexisting residual strain in the fiber is charac-

terized by the parameter

FR= R2 E E (4)

or, in nondimensional form

FRm - FR/Fm ()

and the displacement at maximum load is urn.

The effect of residual stress is to increase (for tensile stress) or decrease (forb

compressive stress) the displacement at given force during the first loading. However, the

subsequent changes in displacement during unloading and reloading are not affected by the

residual stresses. Thus, the influence of residual stress is conveniently illustrated in Fig. 3b

by plotting the equations of Tables I to 3 in terms of the displacement U-U m . The force-

displacement relations for the first loading and unloading cycle are plotted in an alterna-

tive, normalized form In Fig. 4.
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3.0 DISCUSSION

The results of Fig. 4 indicate that the presence of residual stress in a composite

can be identified by its influence on the force-displacement relation for the indentation

experiment. Two characteristic effects are revealed by plotting the data in the form F2 vs

u; a change in the relative amount of recovery during unloading, and a change in the initial

loading curve from being linear in the absence of residual stress to being nonlinear, with

positive curvature for tensile residual stress and negative curvature for compressive stress.

The magnitude of the residual stress is most conveniently obtained from measurement of

the relative recovery after unloading. The relation between the normalized residual stress

and the ratio of the displacement after unloading to the peak displacement is shown in

* Fig. 5. In the case of compressive residual stress in the fiber, the use of Fig. 5 to evaluate

* the residual stress requires that the peak indentation force, Fm , exceed 2FR, because at

smaller values of Fm the recovery after unloading is complete, and the initial loading curve

* is linear (but with one half of the slope that would be obtained in the absence of residual

stress).

The magnitude of the interfacial sliding resistance, r, can also be evaluted from

the force-displacement measurements. This is done most conveniently from absolute dis-

placements during unloading and reloading, since they are not affected by the residual

stresses. For example, the magnitude of r can be obtained directly from the slope, F2/Au,

of the reloading curve of Fig. 4 (with Tables I to 3 and Eq. (3b)):

(F2/Au)/82REf (6)

162
C9755HB/jbs



Rockwell International
Science Center

SC5432.AR

It is important to consider other effects which may modify the force-displace-

ment relation. One of these is degradation of the interface during initial forward sliding,

leading to a reduction in the interfacial friction upon reverse sliding. This effect has been

analyzed:6 reduction of - upon reverse loading results in an increased relative recovery,

similar to the effect of compressive residual stress in Fig. 4a. However, the role of reduc-

ing t can be distinguished from that of residual stress because the initial loading curve

remains linear if there is no residual stress. Moreover, a reduction in I alters the relative

displacement after unloading by a factor that is independent of the peak load used in the

indentation (u/um = 2/1'1 2 + TI), where T, and [2 are the values of r during forward and

reverse sliding), whereas the relative recovery in the presence of residual stress is

dependent on the peak load (Fig. 5). Therefore, measurements of relative recovery at

several values of Fm/FR and comparison with Fig. 5 would distinguish this effect. Another

indication of whether - remains constant can be obtained by subsequent loading and

unloading cycles: if r remains constant the first unload/reload cycle is retraced, whereas if

* r continued to decrease, subsequent reloading would cause larger displacements.

The existence of bonding at the fiber/matrix interface can also result in an

increased relative recovery after unloading. Moreover, the relative recovery is dependent

upon the peak load used in the indentation, in a manner qualitatively similar to that for

composites with compressive residual stresses in the fibers: in both cases the relative

recovery increases with decreasing Fm. Therefore, the responses are distinguished more

readily from the shape of the initial loading curve, which remains linear for a stress-free

composite with bonding at the fiber matrix, but is nonlinear in the presence of residual

stresses. The difference is most sensitive at small values of Fm; in the presence of

compressive residual stress in the fiber the slope of the initial loading curve, F2(U),
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approaches that of the reloading curve, whereas for a bonded interface the slope of the

reloading curve is always double that of the initial loading curve.

4.0 CONCLUSIONS

Residual axial stresses in a fiber modify the degree of sliding between the fiber

and matrix caused by a force applied to the end of the fiber (e.g., by an indenter). The

force-displacement relation, plotted as F 2 vs u, for initial loading beL-mes nonlinear, with

positive curvature for tensile residual stresses and negative curvature for compressive

stress. However, displacement changes during subsequent unloading and reloading are not

* affected by residual stress. Consequently, the relative recovery is dependent upon the

residual stress and provides a convenient quantitative measure of its magnitude.
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FIGURE CAPTIONS

Fig. I Schematic diagram of indentation experiment used to measure interfacial sliding.

Fig. 2 Axial strains in fibers indented as in (A), plotted as a function of distance, z,

beneath the surface. Strain distributions shown before loading, during initial

loading, and during subsequent unloading and reloading, for composites without

residual stress, ((B) to (D)), with residual tensile stress in the fiber ((E) to (H)),

and with residual compressive stress in the fiber (() to (L)). Displacements of the

end of the fiber below the matrix surface are represented by the shaded areas.

Fig. 3 (a) Force-displacement relation for pushing of a fiber in a stress free composite

b (from Ref. 6).

(b) Force-displacement relations for composites with residual stresses, plotted

p with origin at the maximum displacement Um. All unload/reload curves are

coincident.

Fig. 4 Normalized force-displacement relations for initial loading and unloading:

(a) compressive residual stress, and (b) tensile residual stress.

Fig. 5 Relation between the relative recovery of the fiber displacement after unloading

and the normalized residual stress.
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Table 1
4

Stress-Free Composite

U U/U o

Loading oF 2  (F/F M)2

Unloading U0 - s(F - F) 2 12 1 - (1 - F/Fm)212

Reloading 2 BF2 /2 [1 + (F/Fo) 2 ]/2

Table 2
Residual Tension in Fiber

U U/Urn

2 F 21 + 2 FRm(Fm/F)
Loading F 21 + 2F/F] F )2 1 + 2 FR

m FRm

2 (1- F/Fo)2

* Unloading Urm - sF m - F12 /2 1 - 2(1 + 2FRmJ

0 2 1 - (F/Fm)2

Reloading Um - U/2 + BF/2 1 - 2(1 + 2 FRm)

A
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Table 3

Residual Compression in Fiber

U U/Um

Loading

F < 2FR oF2/2 (F/FrM)2

F 2 Fm 2
2  FR FR2F2 1 - 2FRm(.T) + 2FRm(9)F >2FR  oF2[1 - T + 2(!-)21 CF )I F -F R F

Unloading 2

Fm < 
2FR Uo/2 - a(Fm - F)2/2 11- (1 - F-) I

m

(1 - F/Fro) 2

Fm> 2FR U m - s(Fm - F)2/2 1- 2
211 - 2FRm + 2 FRmI

Reloading

Fm < 
2 FR F2/2 (F/Fm)2

2 I- (F/Fm) 2

Fm > 2FR Um - U/2 + BF2/2 1 - 2
2[1 - 2FRm + 2F J

A
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